There are 76 atoms in total
0.0102 moles Na₂CO₃ = 1.08g of Na₂CO₃ is necessary to reach stoichiometric quantities with cacl2.
<h3>Explanation:</h3>
Based on the reaction
CaCl₂ + Na₂CO₃ → 2NaCl + CaCO₃
1 mole of CaCl₂ reacts per mole of Na₂CO₃
we have to calculate how many moles of CaCl2•2H2O are present in 1.50 g
- We must calculate the moles of CaCl2•2H2O using its molar mass (147.0146g/mol) in order to answer this issue.
- These moles, which are equal to moles of CaCl2 and moles of Na2CO3, are required to obtain stoichiometric amounts.
- Then, we must use the molar mass of Na2CO3 (105.99g/mol) to determine the mass:
<h3>
Moles CaCl₂.2H₂O:</h3>
1.50g * (1mol / 147.0146g) = 0.0102 moles CaCl₂.2H₂O = 0.0102moles CaCl₂
Moles Na₂CO₃:
0.0102 moles Na₂CO₃
Mass Na₂CO₃:
0.0102 moles * (105.99g / mol) = 1.08g of Na₂CO₃ are present
Therefore, we can conclude that 0.0102 moles Na₂CO₃ is necessary.to reach stoichiometric quantities with cacl2.
To learn more about stoichiometric quantities visit:
<h3>
brainly.com/question/28174111</h3>
#SPJ4
Gabriel Fahrenheit invented the thermometer
Removing seed casings from grains is SEPARATING. a soda bubble bubbling when it is opened is MIXING. a bright copper statue turning green is MIXING. remove salt from seawater is SEPARATING. water decomposing is SEPARATING.
<h3>
Answer:</h3>
322.7 kW
<h3>
Explanation:</h3>
- Power refers to the rate at which work is done.
- Therefore; Power = Work done ÷ time
- It is measured in joules per seconds or Watts
In this case, we are required to convert 0.3227 MW to kilowatts
We need to know that;
- 10^6 watts = 1 Megawatts(MW)
- 10^3 Watts = 1 kilowatts (kW)
Therefore;
10^3 kW = 1 MW
Therefore, the suitable conversion factor is 10^3kW/MW
Hence;
0.3227 MW is equivalent to;
= 0.3227 MW × 10^3kW/MW
= 322.7 kW
Thus, the peak power output is 322.7 kW