To determine the Ka of the acid, we can use the equation for the pH of weak acids which is expressed as:
pH = -0.5 log Ka
2.67 = -0.5 log Ka
Ka = 4.571x10^-6
Weak acids are acids that do not dissociate completely in solution. The solution would contain the cations, anions and the acid itself as a compound. Hope this helps.
Answer:
Option A. KCl (aq)
Option D. Mg(OH)₂(s
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
MgCl₂(aq) + KOH(aq) —>
In solution, MgCl₂(aq) and KOH(aq) will dissociate as follow:
MgCl₂(aq) —> Mg²⁺(aq) + 2Cl¯(aq)
KOH(aq) —> K⁺(aq) + OH¯(aq)
MgCl₂(aq) + KOH(aq) —>
Mg²⁺(aq) + 2Cl¯(aq) + 2K⁺(aq) + OH¯(aq) —> 2K⁺(aq) + 2Cl¯(aq) + Mg(OH)₂ (s)
MgCl₂(aq) + KOH(aq) —> 2KCl (aq) + Mg(OH)₂(s)
Thus, the products of the above reaction are: KCl(aq) and Mg(OH)₂(s)
Thus, option A and D gives the correct answer to the question.
Answer : The correct option is, pressure.
Explanation :
The ideal gas equation is,

where,
P = pressure of the gas
V = volume of the gas
n = number of moles of gas
T = temperature of the gas
R = gas constant
The value of 'R' has several different values which are :




That means, the value of 'R' is different due the change in the pressure value and all the variables (temperature, volume and moles) are constant.
Hence, the correct option is, pressure.
Answer:
ΔG = -6.5kJ/mol at 500K
Explanation:
We can find ΔG of a reaction using ΔH, ΔS and absolute temperature with the equation:
ΔG = ΔH - TΔS
Computing the values in the problem:
ΔG = ?
ΔH = 2kJ/mol
T = 500K
And ΔS = 0.017kJ/(K•mol)
Replacing:
ΔG = 2kJ/mol - 500K*0.017kJ/(K•mol)
ΔG = 2kJ/mol - 8.5kJ/mol
<h3>ΔG = -6.5kJ/mol at 500K</h3>
2 H₂ + O₂ = 2 H₂O
Answer B only synthesis.
hope this helps!