Answer:
23.71J is the work that the gas do.
Explanation:
The work that a gas do under isobaric conditions follows the formula:
W = P*ΔV
<em>Where W is work in atmL, P is the pressure and ΔV is final volume -Initial volume In Liters</em>
Replacing with the values of the problem:
W = P*ΔV
W = 0.600atm*(0.44000L - 0.0500L)
W = 0.234atmL
In Joules (1atmL = 101.325J):
0.234atmL × (101.325J / 1 atmL) =
<h3>23.71J is the work that the gas do.</h3>
<em />
Answer:
molarity= 0.238 mol L-
Explanation:
The idea here is that you need to use the fact that all the moles of sodium phosphate that you dissolve to make this solution will dissociate to produce sodium cations to calculate the concentration of the sodium cations.
Na 3 PO 4 (aq) → Na + (aq) + PO3−4 (aq)
Use the molar mass of sodium phosphate to calculate the number of moles of salt used to make this solution.
3.25g⋅1 mole N 3PO4 163.9g = 0.01983 moles Na3 PO 4
Now, notice that every
1 mole of sodium phosphate that you dissolve in water dissociates to produce
3bmoles of sodium cations in aqueous solution.
Answer: Heating the hydrated forms of cobalt chloride reverses the reactions above, returning cobalt chloride to the blue, water-free, or anhydrous, state. Water is "liberated" in these reactions, known as dehydration reactions.
Explanation:
Answer:
Answer of question a is 345J.
Explanation:
In question a following is given in data:
-mass of iron (m) = 10.0 g
-temperature (ΔT) = final temperature- initial temperature= 100-25= 75 degree Celsius
-Specific Heat capacity of iron (c)= 0.46J/g°C.
Heat (Q)=?
Solution:
Formula for Heat is :
Q=m x c x ΔT
Q= 10 x 0.46 x 75
Q= 345 J.
so, 345 joules of heat is needed to increase the temperature of 10 grams of iron.
- From the above formula all other questions can easily be solved from the same procedure.
Answer:
Increasing substrate concentration also increases the rate of reaction to a certain point. Once all of the enzymes have bound, any substrate increase will have no effect on the rate of reaction, as the available enzymes will be saturated and working at their maximum rate.