Answer:
~1.417M
Explanation:
Molarity=(number of moles of solute)/(litres of solution)
In this case, we need to find moles of potassium bromide.
Mass=25.3g
Molar mass= 119g/mol
moles=(mass/molar mass)
=(25.3)/(119)
=0.2126moles of potassium bromide
Molarity=(0.2126)/(150/1000)
~1.417M
Hope this helps:)
Answer:
A 12.630 bar of chocolate contains 8315 milligrams of sugar
Explanation:
From the basics of conversion, we can find that:
1 gram is equal to 1000 mg
Using cross multiplication, we can find how many milligrams are present in 8.315 grams as follows:
1 gram .............> 1000 mg
8.315 grams ....> ?? mg
amount in milligrams = (8.315*1000) / 1 = 8315 milligrams
Hope this helps :)
Answer:
A. Treated water from the plant would affect communities downriver.
Explanation:
Answer:
amount of charge
Explanation:
Oxygen and sulfur are both in Group 16, which means they have a -2 charge. They have two more electrons than protons, making the charge of the ion negative.
Hope that helps.
Answer:
a) Kb = 10^-9
b) pH = 3.02
Explanation:
a) pH 5.0 titration with a 100 mL sample containing 500 mL of 0.10 M HCl, or 0.05 moles of HCl. Therefore we have the following:
[NaA] and [A-] = 0.05/0.6 = 0.083 M
Kb = Kw/Ka = 10^-14/[H+] = 10^-14/10^-5 = 10^-9
b) For the stoichiometric point in the titration, 0.100 moles of NaA have to be found in a 1.1L solution, and this is equal to:
[A-] = [H+] = (0.1 L)*(1 M)/1.1 L = 0.091 M
pKb = 10^-9
Ka = 10^-5
HA = H+ + A-
Ka = 10^-5 = ([H+]*[A-])/[HA] = [H+]^2/(0.091 - [H+])
[H+]^2 + 10^5 * [H+] - 10^-5 * 0.091 = 0
Clearing [H+]:
[H+] = 0.00095 M
pH = -log([H+]) = -log(0.00095) = 3.02