16 and 6
Explanation:
the top number will be 16 and the bottom number will be 6
The compound name for H3S5 is hydrosulfide sulfanide sulfide
1st one is Science and the 2nd one is Bias
Answer:
A. Na₂SO₄ and HCl
C. Polar solutes are soluble in polar solvents but are insoluble in non-polar solvents Non-polar solutes are insoluble in polar solvents but are are soluble in non-polar solvents
Ionic solutes are soluble in polar solvents but are insoluble in non-polar solvents.
Like dissolves like simply means that molecules of substances having similar chemical properties dissolve in each other
Explanation:
A. Ionic substances like Na₂SO₄ are composed of charged particles called ions. These ions are either positively charged or negatively charged, therefore, they are attracted to substances of opposite charges. Also, polar molecules like HCl contains two oppositely charged ends. A polar solvent consists of molecules with two oppositely charged ends, therefore, ionic substances as well polar substances dissolve in them according to the concept of like dissolves like.
Gasoline being non-polar will only dissolve in like substances, polar solvents.
C. Polar solutes are soluble in polar solvents but are insoluble in non-polar solvents Non-polar solutes are insoluble in polar solvents but are are soluble in non-polar solvents
Ionic solutes are soluble in polar solvents but are insoluble in non-polar solvents.
The statement "Like dissolves like" simply means that molecules of substances having similar chemical properties dissolve in each other. For example gasoline, a non-polar substance will dissolve only in a non-polar solvent like kerosene. Also, HCl, a polar molecule will dissolve in a polar solvent like water.
Answer:
The new partial pressures after equilibrium is reestablished:



Explanation:

At equilibrium before adding chlorine gas:
Partial pressure of the 
Partial pressure of the 
Partial pressure of the 
The expression of an equilibrium constant is given by :


At equilibrium after adding chlorine gas:
Partial pressure of the 
Partial pressure of the 
Partial pressure of the 
Total pressure of the system = P = 263.0 Torr




At initail
(13.2) Torr (32.8) Torr (13.2) Torr
At equilbriumm
(13.2-x) Torr (32.8-x) Torr (217.0+x) Torr


Solving for x;
x = 6.402 Torr
The new partial pressures after equilibrium is reestablished:


