1) deep trenches
2) active volcanoes
3) arcs of islands along the tectonic boundaries
4) in some cases, mountain ranges
Answer:
the original concentration of A = 0.0817092 M
Explanation:
A reaction is considered to be of first order it it strictly obeys the graphical equation method.
where;
k = the specific rate coefficient = 3.4 × 10⁻⁴ s⁻¹
t = time = 5.0 h = 5.0 × 3600 = 18000 seconds
a = initial concentration = ???
a - x = remaining concentration of initial concentration at time t = 0.00018 mol L⁻¹
a = 0.0817092 M
Thus , the original concentration of A = 0.0817092 M
Answer:
Weigh the empty crucible, and then weigh into it between 2 g and 3 g of hydrated copper(II) sulphate. Record all weighings accurate to the nearest 0.01 g.
Support the crucible securely in the pipe-clay triangle on the tripod over the Bunsen burner.
Heat the crucible and contents, gently at first, over a medium Bunsen flame, so that the water of crystallisation is driven off steadily. The blue colour of the hydrated compound should gradually fade to the greyish-white of anhydrous copper(II) sulfate. Avoid over-heating, which may cause further decomposition, and stop heating immediately if the colour starts to blacken. If over-heated, toxic or corrosive fumes may be evolved. A total heating time of about 10 minutes should be enough.
Allow the crucible and contents to cool. The tongs may be used to move the hot crucible from the hot pipe-clay triangle onto the heat resistant mat where it should cool more rapidly.
Re-weigh the crucible and contents once cold.
Calculation:
Calculate the molar masses of H2O and CuSO4 (Relative atomic masses: H=1, O=16, S=32, Cu=64)
Calculate the mass of water driven off, and the mass of anhydrous copper(II) sulfate formed in your experiment
Calculate the number of moles of anhydrous copper(II) sulfate formed
Calculate the number of moles of water driven off
Calculate how many moles of water would have been driven off if 1 mole of anhydrous copper(II) sulfate had been formed
Write down the formula for hydrated copper(II) sulfate.
#*#*SHOW FULLSCREEN*#*#
Explanation:
Entropy is also defined as a measure of the average kinetic energy of particles in a sample of matter.