Answer:
4(2x-3)(2x + 3)
Step-by-step explanation:
Here, we want to simplify the given expression
we can have;
16x^2-36
= 4(4x^2 -9)
we can use the difference of two squares
where;
a^2 - b^2 = (a-b)(a + b)
= 4(2x-3)(2x+ 3)
<span>the answer is 2.78 because it add up 10
</span>
Answer:
R1 = {(1, 7) (2, 7) (4, 7) (6, 7)}
R3 = {(x, y) (y, z) (z, t) (t, v)}
R1 and R3 are functions because first element in the ordered pair is not repeating, i.e they have unique images
We have
<span>Va(airplane)=150
East</span>
Vw(wind)=7.1
South East
<span>
</span><span>resulting vector R</span>
airplane
Vax=150 Vay=0 it only has component x
WindVwx=7.1*cos45=5.02
Vwy=7.1*sin45=-5.02
is negative because is South direction
|R|=(Rx^2+Ry^2) ^0.5
Rx=150+5.02=155.02
Ry=0-5.02=-5.02
<span>|R|=155.10
miles/hour South East</span>
Determine angle θ
Rx=R*cos(θ)
<span>Cos(θ)=Rx/R</span>
<span>Cos(θ)=155.02/155.10=0.9995</span>
θ =arc cos Rx/R
θ =1.8119 º
Rx represents the component in the East direction of the resultant force. Your contribution is given by both, the force of the plane and the wind. The contribution of the wind makes the airplane's speed greater
Ry represents the component in the South direction of the resulting force
Its contribution is exclusive of the wind since the airplane has no component
in this direction
|R| the force resulting from the combined action of the force of the plane and the force of the wind
θ represents the angle that forms the resultant force with respect to the x axis or east direction