To find moles in this sample, you would divide grams by molar mass of ethyl alcohol
(18.0g)/(46.07g/mol) = 0.391mol C2H6O
The graph is not given in the question, so, the required graph is attached below:
Answer:
According to the graph, the relationship between the density of the sugar solution and the concentration of the sugar solution is directly proportional to each other as they both are increasing exponentially.
The graph shows that, the density of sugar solution will increase with the increase in concentration of sugar in the solution.
It is important because if the sample size is smaller, outliers could skew the data more than if it was large.
The balanced chemical equation for the above reaction is as follows;
2Ca + O₂ --> 2CaO
stoichiometry of Ca to O₂ is 2:1
this means that 2 mol of Ca reacts with 1 mol of O₂.
If O₂ is the limiting reactant,
4 mol of O₂ should react with (4x2) - 8 mol of Ca
however only 7.43 mol of Ca is present. Therefore Ca is the limiting reactant.
7.43 mol of Ca reacts with - 7.43/2 = 3.715 mol of O₂
therefore there's excess O₂₂ remaining after the reaction
Since Ca is the limiting reactant, it is fully used up in the reaction and there is no Ca remaining after the reaction is completed.