A force called the effort force is applied at one point on the lever in order to move an object, known as the resistance force, located at some other point on the lever
Answer:
Calculate the number of moles of CO2 by the formula n=PV/RT, where P is the pressure from Step 3, V is the volume from Step 2, T is the temperature from Step 1 and R is a proportionality constant equal to 0.0821 L atm / K mol.
Explanation:
Because it requires more energy to create a neutron from a proton than it does to create a proton from a neutron, protons were formed more frequently than neutrons in the early universe. The correct answer is option b.
To find the answer, we need to know more about the early universe.
<h3>How the formation of proton over neutrons was favored in the early universe?</h3>
- A neutron is produced with greater energy than a proton.
- However, later on, some of the protons were changed into neutrons.
- Contrary to some claims, the proton is a stable particle that never decays, but the neutron is unstable outside of the nucleus and decays with a half life of around 10.5 minutes.
- However, very few would have had time to decay on the timeline you mention in your question.
- Every matter particle should have been accompanied by an antimatter particle, and every proton, neutron, and electron, by an anti-neutron and a positron, respectively.
- Where did all the antimatter go is the great mystery. There have been a few attempts to explain this, but they have failed.
Thus, we can conclude that, the correct answer is option b.
Learn more about the early universe here:
brainly.com/question/28130096
#SPJ1
Answer:
Molarity of the sodium hydroxide solution is 1.443 M/L
Explanation:
Given;
0.60 M concentration of NaOH contains 2.0 L
3.0 M concentration of NaOH contains 495 mL
Molarity is given as concentration of the solute per liters of the solvent.
If the volumes of the two solutions are additive, then;
the total volume of NaOH = 2 L + 0.495 L = 2.495 L
the total concentration of NaOH = 0.6 M + 3.0 M = 3.6 M
Molarity of NaOH solution = 3.6 / 2.495
Molarity of NaOH solution = 1.443 M/L
Therefore, molarity of the sodium hydroxide solution is 1.443 M/L