2. Rubidium
3. Antimony
4. Ytterbium
5. Einsteinium
Based on the data given, the molar mass of the gas is 165.5 g/mol while the molecular weight of the gas is 165.5 amu
<h3>How can molar mass of a gas be obtained from density, temperature and pressure?</h3>
The molar mass of a gas can be obtained from density, temperature and pressure using the formula below:
- molar mass = density × molar gas constant × temperature/pressure
Molar gas constant, R = R = 0.082 L.atm/mol/K.
Temperature = 150 °C = 423 K
Pressure = 785 torr = 1.033 atm
density = 4.93 g/L
molar mass of gas = 4.93 × 0.082 × 423/1.033
molar mass of gas = 165.5 g/mol
Then, molecular weight of the gas = 165.5 amu
Therefore, the molar mass of the gas is 165.5 g/mol while the molecular weight of the gas is 165.5 amu
Learn more about molar mass of a gas at: brainly.com/question/26215522
Answer:
1.8g
Explanation:
Initial volume = 43.5ml
Final volume = 49.4ml
Mass = 10.88g
Density = ?
Volume = Final volume - initial volume
= 49.4 - 43.5
= 5.9ml
Density = Mass/volume
Density = 10.88/5.9
= 1.8g/ml
Answer:
You subtract the atomic number from the mass number to find the number of neutrons. If the atom is neutral, the number of electrons will be equal to the number of protons.