Water would have a much lower boiling point much like its other hydrides and it would loss its ability to dissolve polar substances plus it couldn't form water columns so no more cohesion between water molecules
Answer:
285.4 moles of gas are in a 35.0 L scuba canister if the temperature of the canister is 27.3 °C and the pressure is 200.8 atm.
Explanation:
An ideal gas is a theoretical gas that is considered to be composed of randomly moving point particles that do not interact with each other. Gases in general are ideal when they are at high temperatures and low pressures.
An ideal gas is characterized by three state variables: absolute pressure (P), volume (V), and absolute temperature (T). The relationship between them constitutes the ideal gas law, an equation that relates the three variables if the amount of substance, number of moles n, remains constant and where R is the molar constant of the gases:
P * V = n * R * T
In this case:
- P= 200.8 atm
- V= 35 L
- n=?
- R= 0.082

- T= 27.3 C= 300.3 K (being O C= 273 K)
Replacing:
200.8 atm* 35 L= n* 0.082
* 300.3 K
Solving:

n= 285.4 moles
<u><em>285.4 moles of gas are in a 35.0 L scuba canister if the temperature of the canister is 27.3 °C and the pressure is 200.8 atm.</em></u>
<u><em></em></u>
First find the number of moles of KSCN is in 4.40g of KSCN
1. Number of moles = mass given (4.40g) / molecular weight(MW) (KSCN)
- to calculate MW, look for each element in the periodic table and add their atomic weight
2. Convert 200mL to liters
3. Concentration = number of moles/ volume in liters from (#2)