<em>The statement that gives the relationship between energy needed in breaking a bond and the one that is released after breakin</em>g is
The amount of energy it takes to break a bond is always less than the amount of energy released when the bond is formed.
- Bond energy can be regarded as amount of energy that is required in breaking a particular bond.
- For a bond to be broken Energy will be added and when a bond is broken there will be release of energy
- Bond breaking can be regarded as endothermic process, it is regarded as endothermic because there is a lot of energy required to be absorbed.
- Where ever a bond is broken, there must be formation of another bond
- Bond forming on the other hand can be regarded as exothermic process, since there is a release of releases energy.
Therefore, more energy is required in breaking of bond compare to energy released after breaking of bond.
Learn more at : brainly.com/question/10777799?referrer=searchResults
Answer:
0.25M
Explanation:
Since molarity is defined as the amount of substance in 1 liter of a solution, and amount in chemistry refers to the number of moles, molarity can be found using the equation below:
Molarity= number of moles ÷ volume in liters
Given: number of moles= 2
Volume= 8L
∴ Molarity of NaCl
= 2 ÷8
= 0.25M
Answer:
No, this is false because we know about the law that says if you add two things together you are adding the masses together, 2 drops of vinegar and 2 drops of ammonia would equal four drops of solution not two
Hope this helps!!
Explanation:
The ion composition of Magnesium is 12,10, 2+.
Magnesium is a chemical element with symbol Mg and an atomic number 12, it has 12 protons, and 12 electrons with a chemical configuration of 2:8:2. It requires to loose two electrons to form a stable configuration forming a cation (positively charged ion) with a charge of +2 and a configuration of 2:8 ( 12 protons and 10 electrons).