Answer:
76.4m/s
Explanation:
Given parameter:
Time taken = 7.8sec
Unknown:
Speed after it dropped = ?
Solution:
To solve this problem, we use one of the kinematics equation:
V = U + gt
V is the final speed
U is the initial speed = 0m/s
g is the acceleration due to gravity
t is the time taken
V = 0 + 9.8 x 7.8 = 76.4m/s
C. copper
Explanation:
Copper is the best conductor of heat from the given options. Plastic, wood and cotton are all poor conductors other wise known as insulators.
Metals are typically good conductors of heat.
- they generally do not have a high specific heat capacity which implies that they get heated easily.
- a good conductor allows heat to flow fast and it simultaneously loses heat readily too.
- copper is a good conductor, when heat its perfectly allows heat to pass through
- when heat is removed, it loses it very fast.
Learn more:
Conductors brainly.com/question/2500879
#learnwithbrainly
The answer is A.
A positive charge’s electric field pushes out.
Hope this helps! -Avenging
Answer:
What make saliva that make your food wet and easy to swallow?
enzyme amylase
Explanation:
The digestive functions of saliva include moistening food, and helping to create a food bolus, so it can be swallowed easily. Saliva contains the enzyme amylase that breaks some starches down into maltose and dextrin. Thus, digestion of food occurs within the mouth, even before food reaches the stomach.
<em>Hope </em><em>it </em><em>h</em><em>elp </em><em>4</em><em>u</em>
<em>Y</em><em>an </em><em>na </em><em>baby</em>
Answer:
Magnetic field at point having a distance of 2 cm from wire is 6.99 x 10⁻⁶ T
Explanation:
Magnetic field due to finite straight wire at a point perpendicular to the wire is given by the relation :
......(1)
Here I is current in the wire, L is the length of the wire, R is the distance of the point from the wire and μ₀ is vacuum permeability constant.
In this problem,
Current, I = 0.7 A
Length of wire, L = 0.62 m
Distance of point from wire, R = 2 cm = 2 x 10⁻² m = 0.02 m
Vacuum permeability, μ₀ = 4π x 10⁻⁷ H/m
Substitute these values in equation (1).

B = 6.99 x 10⁻⁶ T