Answer:
B
Explanation:
It's Scientifically proven
Answer:
W = 0.135 N
Explanation:
Given:
- y (x, t) = 8.50*cos(172*x -2730*t)
- Weight of string m*g = 0.0126 N
- Attached weight = W
Find:
The attached weight W given that Tension and W are equal.
Solution:
The general form of standing mechanical waves is given by:
y (x, t) = A*cos(k*x -w*t)
Where k = stiffness and w = angular frequency
Hence,
k = 172 and w = 2730
- Calculate wave speed V:
V = w / k = 2730 / 172 = 13.78 m/s
- Tension in the string T:
T = Y*V^2
where Y: is the mass per unit length of the string.
- The tension T and weight attached W are equal:
T = W = Y*V^2 = (w/L*g)*V^2
W = (0.0126 / 1.8*9.81)*(13.78)^2
W = 0.135 N
Explanation:
Given that,
Weight of water = 25 kg
Temperature = 23°C
Weight of mass = 32 kg
Distance = 5 m
(a). We need to calculate the amount of work done on the water
Using formula of work done



The amount of work done on the water is 1568 J.
(b). We need to calculate the internal-energy change of the water
Using formula of internal energy
The change in internal energy of the water equal to the amount of the work done on the water.


The change in internal energy is 1568 J.
(c). We need to calculate the final temperature of the water
Using formula of the change internal energy





The final temperature of the water is 23.01°C.
(d). The amount of heat removed from the water to return it to it initial temperature is the change in internal energy.
The amount of heat is 1568 J.
Hence, This is the required solution.
Answer:
4.5m/s
Explanation:
Linear speed (v) = 42.5m/s
Distance(x) = 16.5m
θ= 49.0 rad
radius (r) = 3.67 cm
= 0.0367m
The time taken to travel = t
Recall that speed = distance / time
Time = distance / speed
t = x/v
t = 16.5/42.5
t = 0.4 secs
tangential velocity is proportional to the radius and angular velocity ω
Vt = rω
Angular velocity (ω) = θ/t
ω = 49/0.4
ω = 122.5 rad/s
Vt = rω
Vt = 0.0367 * 122.5
Vt =4.5 m/s
Answer:
stress = 16.9 MPa
Explanation:
The stress in the cable can be calculated as:

Where F is the force and A is the area. So, the area can be calculated as:

Where r is the radius. Since the radius is half the diameter, the radius is 4.0 mm and the area will be equal to:

Then, replacing the force F by 850 N, and A by 50.24 mm², we get that the stress is equal to:

Therefore, the answer is 16.9 MPa