1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zaharov [31]
3 years ago
8

A certain type of laser emits light that has a frequency of 4.2 × 1014 Hz. The light, however, occurs as a series of short pulse

s, each lasting for a time of 3.2 × 10-11 s. (a) What is the wavelength of this light? (b) How many wavelengths are there in one pulse?
Physics
1 answer:
bogdanovich [222]3 years ago
8 0

Explanation:

It is given that,

Frequency of the laser light, f=4.2\times 10^{14}\ Hz

Time, t=3.2\times 10^{-11}\ s

(a) Let \lambda is the wavelength of this light. It can be calculated as :

\lambda=\dfrac{c}{f}

\lambda=\dfrac{3\times 10^8}{4.2\times 10^{14}}

\lambda=7.14\times 10^{-7}\ m

or

\lambda=714\ nm

(b) Let n is the number of the wavelengths in one pulse. It can be calculated as :

n=f\times t

n=4.2\times 10^{14}\times 3.2\times 10^{-11}

n = 13440

Hence, this is the required solution.

You might be interested in
A 782.10 kg car is brought from 7.60 m/s to 3.61 m/s over a time period of 4.23 seconds. What is the average force the car exper
alexandr402 [8]

Answer:

–735.17 N

The negative sign indicate that the force is acting in opposition direction to the car.

Explanation:

The following data were obtained from the question:

Mass (m) of car = 782.10 kg

Initial velocity (u) = 7.60 m/s

Final velocity (v) = 3.61 m/s

Time (t) = 4.23 s

Force (F) =?

Next, we shall determine the acceleration of the car. This can be obtained as follow:

Initial velocity (u) = 7.60 m/s

Final velocity (v) = 3.61 m/s

Time (t) = 4.23 s

Acceleration (a) =?

a = (v – u) / t

a = (3.61 – 7.60) / 4.23

a = –3.99 / 4.23

a = –0.94 m/s²

Finally, we shall determine the force experienced by the car as shown below:

Mass (m) of car = 782.10 kg

Acceleration (a) = –0.94 m/s²

Force (F) =?

F = ma

F = 782.10 × –0.94

F = –735.17 N

The negative sign indicate that the force is acting in opposition direction to the car.

4 0
3 years ago
A descending elevator of mass 1,000 kg is uniformly decelerated to rest over a distance of 8 m by a cable in which the tension i
Stolb23 [73]

The speed  V_{i} of the elevator at the beginning of the 8 m descent is nearly 4 m/s. Hence, option A is the correct answer.

We are given that-

the mass of the elevator (m) = 1000 kg ;

the distance the elevator decelerated to be y = 8m ;

the tension is T = 11000 N;

let us determine the acceleration 'a' by using Newton's second law of motion.

∑Fy = ma

W - T = ma

(1000kg x 9.8 m/s² ) - 11000N = 1000 kg x a

9800 - 11000 = 1000

a = - 1.2 m/s²

Using the equation of kinematics to determine the initial velocity.

V_{f} ² = V_{i}² + 2ay

V_{i} = √ ( 2 x 1.2m/s² x 8 m )

V_{i} = √19.2 m²/s²

V_{i} = 4.38 m/s   ≈ 4 m/s

Hence, the initial velocity of the elevator is 4m/s.

Read more about the Equation of kinematics:

brainly.com/question/12351668

#SPJ4

8 0
1 year ago
What is the magnification of a real image if the image is 15.0 cm from a lens and the object is 60.0 cm from the lens?
Hoochie [10]

Answer:

soluble

Explanation:

7 0
2 years ago
Read 2 more answers
A projectile is shot from the edge of a cliff 80 m above ground level with an initial speed of 60 m/sec at an angle of 30° with
Dvinal [7]

Answer:

8 seconds

Explanation:

Answer:

Explanation:

Going up

Time taken to reach maximum height= usin∅/g

=3 secs

Maximum height= H+[(usin∅)²/2g]

=80+[(60sin30)²/20]

=125 meters

Coming Down

Maximum height= ½gt²

125= ½(10)(t²)

t=5 secs

6 0
3 years ago
An optical disk drive in your computer can spin a disk up to 10,000 rpm (about 1045 rad/s 1045 rad/s ). If a particular disk is
Scilla [17]

Answer:

The magnitude of the average angular acceleration of the disk is 4139.74\ rad/s^2.

Explanation:

Given that,

Angular velocity, \omega_i=968.7\ rad/s

The disk comes to rest, \omega_i=0

Time, t = 0.234 s

We need to find the magnitude of the average angular acceleration of the disk. It is given by change in angular velocity per unit time. So,

\alpha =\dfrac{\omega f}{t}\\\\\alpha =\dfrac{968.7\ rad/s}{0.234\ s}\\\\\alpha =4139.74\ rad/s^2

So, the magnitude of the average angular acceleration of the disk is 4139.74\ rad/s^2.

5 0
3 years ago
Other questions:
  • If Superman wants to slow down a fast car with speed 20 m/s and mass 1000 kg, how much force in N does he need to apply if he wa
    9·1 answer
  • Which resonance form is likely to contribute most to the correct structure of n2o?
    14·1 answer
  • I'm a given chemical reaction, the energy of the products is less than the energy of the reactants. Which statement is true for
    14·2 answers
  • What is the acceleration of a 10kg pushed by a 5n force
    14·1 answer
  • This graph shows velocity vs. time. What does the slope of the line represent? A. speed B. force C. acceleration D. distance
    7·1 answer
  • A substance did not change it's chemical nature in reaction which mostly likely describe the reaction
    9·1 answer
  • An ion accelerated through a potential difference of 115 V experiences an increase in kinetic energy of 7.37 x 1017 J. Calculate
    7·1 answer
  • Relate the output of energy from a heat engine to the energy put into the heat engine considering the second law of thermodynami
    7·1 answer
  • 3. A car does an emergency stop from 144 km\h in 4s<br> What was its deceleration?
    11·1 answer
  • PLEASE HELP :) THANK YOU Geologic processes change Earth's surface on varying scales of space and time. They range from rapid to
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!