Answer:
<h3>The answer is 11 g/mL</h3>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 3025 g
volume = 275 mL
We have

We have the final answer as
<h3>11 g/mL</h3>
Hope this helps you
Electrolytes are substances that produce ions when they dissolve in water.
What are electrolytes?
When some substances are dissolved in water, they undergo physical or chemical changes, creating ions in solution. These substances form an important class of compounds called electrolytes. Substances that do not release ions when dissolved are called non-electrolytes. A substance is said to be a strong electrolyte if the physical or chemical process that produces ions is inherently 100% efficient (all dissolved compounds produce ions). A solute is said to be a weak electrolyte if only a relatively small portion of the solute undergoes ion production processes.
By measuring the electrical conductivity of aqueous solutions containing substances, substances can be identified as strong, weak, or non-electrolyte. To conduct electricity, a substance must contain free-moving charged species. The best known is the conduction of electricity through metal wires. In this case, the mobile charged unit is the electron.
Therefore, Electrolytes are substances that produce ions when they dissolve in water.
To know more about electrolyte, visit:
brainly.com/question/17089766
#SPJ4
Key differences between Mass and Weight
The weight may vary, but the mass is constant.
The mass is measured in kilograms (kg), while the weight is measured in newtons (N).
Mass refers to the amount of matter an object has, but the weight refers to the force of gravity acting on an object.
Electric current is flow of electrons in a conductor. The force required to make current flow through a conductor is called voltage and potential is the other term of voltage.
Assuming the concentration of stock solution is 50% sodium phosphate buffer solution, the volume of stock solution required is 6 mL and the volume of water required is 6 mL.
<h3>What volume of a stock Sodium phosphate buffer and water is needed to 12 mL of 25% sodium phosphate buffer of pH 4?</h3>
The process of preparing solutions from stock solutions of higher concentration is known as dilution.
Dilution is done with the aid of the dilution formula given below:
where
- C1 is the concentration of stock solution
- V1 is the volume of stock solution required to prepare a diluted solution
- C2 is the concentration of the diluted solution prepared
- V2 is the final volume of the diluted solution
From the data provided:
C1 is not given
V1 is unknown
C2 = 25%
V2 = 12 mL
- Assuming C1 is 50% solution
Volume of stock, V1, required is calculated as follows:
V1 = C2V2/C1
V1 = 25 × 12 /50
V1 = 6 mL
Therefore, the volume of stock solution required is 6 mL and the volume of water required is 6 mL.
Learn more about dilution formula at: brainly.com/question/7208546