Answer:
The mass of a sample of iron that has had 300 J applied to it and heats up from 20 degrees Celsius to 40 degrees Celsius is 32.61 grams.
Explanation:
Calorimetry is the measurement and calculation of the measurement of heat changes exchanged by a body or a system produced in physical and chemical processes.
The sensible heat of a body is the amount of heat received or transferred by a body to produce a change in temperature but without a change in physical state.
The sensible heat in a constant pressure is calculated by:
Q = c * m * ΔT
where Q is the heat exchanged by a body of mass m, constituted by a substance of specific heat c, and where ΔT is the temperature variation (ΔT=Tfinal - Tinitial)
In this case:
- c= 0.46

- m= ?
- Tfinal= 40 C
- Tinitial= 20 C
Replacing:
300 J= 0.46
* m* (40 - 20) C
Solving:
300 J= 0.46
* m* 20 C

m= 32.61 g
M = moles of solute / liters of solution
2.00 M = x / 10.0 L
x = 20.0 mol
Suppose the molarity was listed as 2.0 M (two sig figs). How to display the answer? Like this:
20. mol
Answer : The [α] for the solution is, -118.8
Explanation :
Enantiomeric excess : It is defined as the difference between the percentage major enantiomer and the percentage minor enantiomer.
Mathematically,

Given:
% major enantiomer = 86 %
% minor enantiomer = 14 %
Putting values in above equation, we get:


Now we have to calculate the [α] for the solution.
![[\alpha]=\text{Enantiomer excess}\times [\alpha]_{Pure}](https://tex.z-dn.net/?f=%5B%5Calpha%5D%3D%5Ctext%7BEnantiomer%20excess%7D%5Ctimes%20%5B%5Calpha%5D_%7BPure%7D)
![[\alpha]=0.72\times -165](https://tex.z-dn.net/?f=%5B%5Calpha%5D%3D0.72%5Ctimes%20-165)
![[\alpha]=-118.8](https://tex.z-dn.net/?f=%5B%5Calpha%5D%3D-118.8)
Thus, the [α] for the solution is, -118.8
Answer:
The motion of the water molecules increase as heat is added.
Explanation:
Hello!
In this case, in general terms, one can know that molecules and heat have a relationship by which one affects the other, more specifically, the heat affects how the molecules behave. In such a way, as the heat added to a system increases its internal energy, one can notice that energy speeds up the molecules because they acquire such energy and the motion starts being increased, it means, the molecules start moving or vibrating faster than before of that heat addition. This is due to the increase of the internal energy, which based on the first law of thermodynamics is related with the velocity of the molecules.
Best regards!
5.88 moles x 6.02x10^23<span> f.u./mole = </span><span>3.54x1024 formula units</span>