MgSO4 + Na3PO4 = Na2SO4 + Mg3(PO4)2
Answer: The products of Na3PO4 + MgSO4 are Na2SO4 + Mg3(PO4)2
Explanation:
Answer:
Br
|
Br-P-Br
|
Br
Explanation:
To calculate the valance electrons, look at the periodic table to find the valance electrons for each atom and add them together. P is in column 5A, so it has 5, Br is in column 7A, so it has 7 (multiply by 4 since there are 4 Br atoms to give 28) and there is a 1- charge, so add one more electron. 5+28+1=34, so there are 34 electrons to place. P would be the central atom, so place it in the middle. Place each Br around the P (as shown above) with a a single line connecting it. Each line represents 2 electrons, so 8 total have been place, leaving 26 remaining. Place 6 electrons around each Br (2 on each of the unbonded sides), which leaves 2 electrons remaining. The remaining pair of unbound electrons will be attached to the P between any two Br atoms. Phosphorus doesn't have to follow the octet rule, so it actually ends up with 10 valance electrons.
The mass decay rate is of the form

where
m₀ = 3000 g,the initial mass
k = the decay constant
t = time, years.
Because the half-life is 30 years, therefore

After 60 years, the mass remaining is

Answer: 750 g
Answer:
quartz (SiO2)n
Explanation:
Melting point is defined as the temperature or point at which the substances change its state from solid to liquid.
Quartz (SiO2)n has high melting point than O2 because Quartz (SiO2)n is found in the form of hard, crystalline mineral that is made up of silicon and oxygen atoms having strong covalent bonds between all the atoms. So, a lot of energy is required to break the bond between the atoms and it has a high melting point.
Hence, the correct answer is quartz (SiO2)n.
The correct option is A. Rutherford model of the atom consider an atom to be made up of a central nucleus with electrons orbiting around it. The nucleus is considered to be tiny, heavy and its positively charged while the electrons are negatively charged. The shortcoming of this model is that it was not able to explain how the positive nucleus was not able to attract the negative electrons and pull them inside the nucleus.