Answer:
Please find the solution in the attached file.
Explanation:
Follow
these steps to solve the given equation:
Multiply
the two decimal figures together and find the sum of the exponents, that is,
(1.5
* 1.89) * 10 ^4+3
(2.835)
* 10^7
10^7
can also be written as e.70
'e'
stands for exponential.
Therefore,
we have 2. 835 e 7.0 = 2.8 e 7.0.
Based on the calculations above, the correct option is A.
Answer: Charles's law, Avogadro's law andd Boyle's law.
Charles law states the constant ratio of volume to temperature, at constant pressure. Boyle's law states the constat product of pressure and volumen at constant temperature. Avogadro's law states that equal volumes of gases at the same temperature and pressure have equal number of particles.
So, all those three laws combined state the relation of pressure, volume, temperature and number of particles of a gas, which is what the ideal gas law does: PV = n RT.
Answer:
1.60x10⁶ billions of g of CO₂
Explanation:
Let's calculate the production of CO₂ by a single human in a day. The molar mass of glucose is 180.156 g/mol and CO₂ is 44.01 g/mol. By the stoichiometry of the reaction:
1 mol of C₆H₁₂O₆ -------------------------- 6 moles of CO₂
Transforming for mass multiplying the number of moles by the molar mass:
180.156 g of C₆H₁₂O₆ ----------------- 264.06 g of CO₂
4.59x10² g ---------------- x
By a simple direct three rule:
180.156x = 121203.54
x = 672.77 g of CO₂ per day per human
So, in a year, 6.50 billion of human produce:
672.77 * 365 * 6.50 billion = 1.60x10⁶ billions of g of CO₂
B, the opposing forces are the same, thus, the ball doesn't move back or forward.