Answer:
The three statements are true
Explanation:
For the reaction:
I₂O₅(s) + 5CO(g) → I₂(s) + 5CO₂(g)
State oxidation of iodine in I₂O₅ is:
5 O²⁻ = 10⁻
As you have 2 I and the molecule has no charge, <em>oxidation state of I is +5</em>.
The carbon in CO has an oxidation state of +2 and in CO₂ is +4. That means <em>the carbon is oxidized</em>
<em />
An oxidizing agent is a substance that produce the oxidation of the agent that reacts with this one. CO is oxidized because of I₂O₅ is producing its oxidation being <em>the oxidizing agent</em>
<em></em>
Thus,<em> the three statements are true</em>.
Answer:
Two non bonded electron pairs and four bonded electron pairs
Explanation:
An image of the compound as obtained from chemlibretext is attached to this answer.
The ion ICl4- ion, is an AX4E2 ion. This implies that there are four bond pairs and two lone pairs of electrons. As expected, the shape of the ion is square planar since the lone pairs are found above and below the plane of the square. This is clear from the image attached.
Answer:
a) [A⁻]/[HA] = 0.227
b) [A⁻]/[HA] = 0.991
c) [A⁻]/[HA] = 2.667
Explanation:
In the Henderson-Hasselbalch equation, HA stands from an acid an A⁻ stands from its conjugate base, as follows:
pH = pka + Log [A⁻]/[HA]
pH = 4.874 + Log[CH₃CH₂CO₂⁻]/[CH₃CH₂CO₂H]
4.23 = 4.874 + Log [A⁻]/[HA]
-0.644 = Log [A⁻]/[HA]
= [A⁻]/[HA]
0.227 = [A⁻]/[HA]
4.87 = 4.874 + Log [A⁻]/[HA]
-0.004 = Log [A⁻]/[HA]
= [A⁻]/[HA]
0.991 = [A⁻]/[HA]
5.30 = 4.874 + Log [A⁻]/[HA]
0.426 = Log [A⁻]/[HA]
= [A⁻]/[HA]
2.667 = [A⁻]/[HA]
The last one 1) exothermic; 2) exothermic