Answer:
Option C. By increasing the temperature
Explanation:
From the graphical illustration above, we see clearly that the volume and temperature of the gas are directly proportional. This implies that as the temperature increases, the volume will also increase and as the temperature decreases, the volume will also decrease. This can further be explained by using the ideal gas equation as shown below:
PV = nRT
P is the pressure.
V is the volume.
n is the number of mole.
R is the gas constant.
T is the temperature.
PV = nRT
Divide both side by P
V = nRT/P
Since n and P are constant, the equation above becomes:
V & T
V = KT
K is the constant.
The above equation i.e V = KT implies that:
As T increases, V will also increase and as T decreases, V will also decrease.
Considering the question given above,
The volume of the gas can be increased if the temperature is increased.
Molar mass of CeCl3 = 246.475 g/mol
This compound is also known as Cerium(III) Chloride.
Convert grams CeCl3 to moles or moles CeCl3 to grams
Molecular weight calculation:
140.116 + 35.453*3
You can use fractional distillation
The independent variable is a variable whose variation does not depend on another.
The correct answer is a. This is because the pH of a solution is defined as -log10(concentration of H+ ions). An inverse logarithmic scale such as this means that a solution with a lower concentration of H+ ions will have a higher pH than one with a higher concentration. Therefore we know that the pH of the second sample will be higher than the first.
Since the logarithmic scale has the base 10, a change by 1 on the scale is a consequence of multiplication/division of the H+ concentration by a factor of 10. As the scale is inverse, this means that a decrease of concentration by factor 1000 is equivalent to increasing the pH by (1000/10) = 3.