Answer:
The fly travels 2.4 m
Explanation:
Since the Two steamrollers begin 100 m apart and head toward each other, each at a constant speed of 1.00 m/s, we can find the time until they crash by the formula:
Distance = Speed × Time
Time = Distance /Speed
Time = (100 m) / (1 m/s)
Time = 100 hours
Now, the fly will spend the same amount of time traveling as the steamrollers.
Since the fly moves at a speed of 2.4 m/s and we have a time of one hour the steamroller take to collide, then the fly will go a distance of;
Distance = speed x time = 2.4 × 1 = 2.4 m
Answer:
Temperature is the kinetic energy of the particles of a substance.
Explanation:
The more kinetic energy a particle has the higher it's temperature. In the case of the atmosphere, which is what we are primarily concerned with in Meteorology, we measure this using a mercury thermometer (in certain situations we use an alcohol thermometer and of course modern times have given us things like dewcells and digital thermometers but we always go back to the mercury thermometer for accuracy).
<u>The Weight </u>is a vector whose magnitude is the product of the mass m of the object and the magnitude of the local gravitational acceleration. Its always directed toward the center of the Earth.
Answer: N = Mgcos(theta)
Therefore, the Normal reaction force is equal to Mgcos(theta)
Explanation:
See attached for a sketch.
From the attachment.
.
N = normal reaction force on block
W = weight of the block
theta = angle of the inclined plane to the horizontal
From the sketch, we can see that
N is equal in magnitude but opposite direction to Wy
N = Wy
And
Wy = Wcos(theta)
Wx = Wsin(theta)
Then,
N = Wy = Wcos(theta)
But W = mass × acceleration due to gravity = mg
N = Mgcos(theta)
Therefore, the Normal reaction force is equal to Mgcos(theta)