1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ann [662]
3 years ago
14

A 72.8-kg swimmer is standing on a stationary 265-kg floating raft. The swimmer then runs off the raft horizontally with a veloc

ity of 5.21 m/s relative to the shore. Find the recoil velocity that the raft would have (again relative to the shore) if there were no friction and resistance due to the water.
Physics
1 answer:
nalin [4]3 years ago
7 0

Answer:

-1.43 m/s relative to the shore

Explanation:

Total momentum must be conserved before and after the run. Since they were both stationary before, their total speed, and momentum, is 0, so is the total momentum after the run off:

m_sv_s + m_rv_r = 0

where m_s = 72.8, m_r = 265 are the mass of the swimmer and raft, respectively. v_s = 5.21 m/s, v_r are the velocities of the swimmer and the raft after the run, respectively. We can solve for v_r

265v_r + 72.8*5.21 = 0

v_b = -72.8*5.21/265 = -1.43 m/s

So the recoil velocity that the raft would have is -1.43 m/s after the swimmer runs off, relative to the shore

You might be interested in
A 6.0 kg mass is placed on a 20º incline which has a coefficient of friction of 0.15. What is the acceleration of the mass down
Leona [35]

Answer:

Explanation:

The form of Newton's 2nd Law that we use for this is:

F - f = ma where F is the Force pulling the mass down the ramp forward, f is the friction trying to keep it from moving forward, m is the mass and a is the acceleration (and our unknown).

We know mass and we can find f, but we don't have F. But we can solve for that by rewriting our main equation to reflect F:

wsin\theta-\mu F_n=ma That's everything we need.

w is weight: 6.0(9.8). Filling in:

6.0(9.8)sin20 - .15(6.0)(9.8) = 6.0a and

2.0 × 10¹ - 8.8 = 6.0a and

11 = 6.0a so

a = 1.8 m/s/s

6 0
3 years ago
a football quarterback throws a football. after it leaves his hand, what forces are acting on the football? choose all that appl
MAVERICK [17]

golekeeper

Explanation:

because they use hand to save keeper

3 0
3 years ago
(a) If a long rope is hung from a ceiling and waves are sent. up the rope from its lower end, why does the speed of the waves ch
vazorg [7]

My response to question (a) and (b) is that all of the element of the rope need to  aid or support the weight of the rope and as such, the tension will tend to increase along with height.

Note that It increases linearly, if the rope is one that do not stretch. So, the wave speed v= √ T/μ   increases with height.

<h3>How does tension affect the speed of a wave in a rope?</h3>

The Increase of the tension placed on a string is one that tends to increases the speed of a wave, which in turn also increases the frequency of any given length.

Therefore,  My response to question (a) and (b) is that all of the element of the rope need to  aid or support the weight of the rope and as such, the tension will tend to increase along with height.  Note that It increases linearly, if the rope is one that do not stretch. So, the wave speed v= √ T/μ   increases with height.

Learn more about tension from

brainly.com/question/2008782

#SPJ4

See full question below

(a) If a long rope is hung from a ceiling and waves are sent up the rope from its lower end, why does the speed of the waves change as they ascend? (b) Does the speed of the ascending waves increase or decrease? Explain.

4 0
2 years ago
How can a karate expert break a concrete block
FinnZ [79.3K]

Many ways, but some of the most famous are kicks (side, back, front, snap) or a smash.

Hope it helped! :)

8 0
3 years ago
How fast does water flow from a hole at the bottom of a very wide, 3.2 m deep storage tank filled with water
Nezavi [6.7K]

Answer:

the velocity of the water flow is 7.92 m/s

Explanation:

The computation of the velocity of the water flow is as follows

Here we use the Bernouli equation

As we know that

V_1 = \sqrt{2g(h_2 - h_1)}\\\\=\sqrt{2g(\Delta h)}  \\\\= \sqrt{2\times9.8\times3.2} \\\\= \sqrt{62.72}

= 7.92 m/s

Hence, the velocity of the water flow is 7.92 m/s

We simply applied the above formula so that the correct value could come

And, the same is to be considered

5 0
3 years ago
Other questions:
  • A star's transverse velocity depends on which two factors?
    6·1 answer
  • Increasing the concentration of greenhouse gases in Earth's atmosphere decreases the transparency of the atmosphere to infrared
    10·1 answer
  • The model of the atom proposed by Greek philosophers appears similar to the model proposed centuries later by Dalton. What was t
    13·1 answer
  • How do you find the density of an object?
    9·2 answers
  • What occurred while the surface rocks of the Moon were impacted, creating a fine dust?
    11·2 answers
  • How many discovered planets are there
    15·1 answer
  • A 0.6 kg ball is initially at rest on a frictionless, horizontal surface. It is struck by a 0.4 kg ball initially moving with a
    7·1 answer
  • A longitudinal wave is observed. Exactly 6 crests are observed
    15·1 answer
  • Pls give me an example of newton's 1 ,2 ,3 law of motion pls this is due tomorrow
    10·1 answer
  • C6H12O6 + 6O2 6CO2+6H2O + energy Which statement correctly compares the reactants and products of the equation?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!