Answer:
The force of friction acting on block B is approximately 26.7N. Note: this result does not match any value from your multiple choice list. Please see comment at the end of this answer.
Explanation:
The acting force F=75N pushes block A into acceleration to the left. Through a kinetic friction force, block B also accelerates to the left, however, the maximum of the friction force (which is unknown) makes block B accelerate by 0.5 m/s^2 slower than the block A, hence appearing it to accelerate with 0.5 m/s^2 to the right relative to the block A.
To solve this problem, start with setting up the net force equations for both block A and B:

where forces acting to the left are positive and those acting to the right are negative. The friction force F_fr in the first equation is due to A acting on B and in the second equation due to B acting on A. They are opposite in direction but have the same magnitude (Newton's third law). We also know that B accelerates 0.5 slower than A:

Now we can solve the system of 3 equations for a_A, a_B and finally for F_fr:

The force of friction acting on block B is approximately 26.7N.
This answer has been verified by multiple people and is correct for the provided values in your question. I recommend double-checking the text of your question for any typos and letting us know in the comments section.
Answer:
option B
Explanation:
given,
height of building = 0.1 km
ball strikes horizontally to ground at = 65 m
speed at which the ball strike = ?
vertical velocity = 0 m/s
time at which the ball strike



t = 4.53 s
vertical velocity at the time 4.53 s = g × t = 9.8 × 4.53 = 44.39 m/s
horizontal velocity =
=14.35 m/s
speed of the ball =
= 46.65 m/s
hence, the speed of the ball just before it strike the ground = 47 m/s
The correct answer is option B
Answer:
The magnitude of the electric field and direction of electric field are
and 75.36°.
Explanation:
Given that,
First charge 
Second charge
Distance between two corners r= 50 cm
We need to calculate the electric field due to other charges at one corner
For E₁
Using formula of electric field

Put the value into the formula


For E₂,
Using formula of electric field

Put the value into the formula


We need to calculate the horizontal electric field



We need to calculate the vertical electric field



We need to calculate the net electric field

Put the value into the formula



We need to calculate the direction of electric field
Using formula of direction



Hence, The magnitude of the electric field and direction of electric field are
and 75.36°.
Speed can never be negative because it does not depend in which direction the car moves whereas, velocity will change if a car turns from due North to East.
Quantities which can be described only by their magnitudes are called scalars and those which are described by both, magnitude and direction are vectors