Answer:
The shortest transverse distance between a maximum and a minimum of the wave is 0.1638 m.
Explanation:
Given that,
Amplitude = 0.08190 m
Frequency = 2.29 Hz
Wavelength = 1.87 m
(a). We need to calculate the shortest transverse distance between a maximum and a minimum of the wave
Using formula of distance

Where, d = distance
A = amplitude
Put the value into the formula


Hence, The shortest transverse distance between a maximum and a minimum of the wave is 0.1638 m.
If the wavelength of light in the visible region is known, it is also known as frequency.
<h3>What is frequency?</h3>
Recurrence is the quantity of events of a rehashing occasion for every unit of time. It is likewise once in a while alluded to as worldly recurrence to underline the differentiation to spatial recurrence, and customary recurrence to underscore the difference to rakish recurrence. Rotating current (ac) recurrence is the quantity of cycles each second in an air conditioner sine wave. Recurrence is the rate at which current heads in a different path each second. It is estimated in hertz (Hz), a global unit of measure where 1 hertz is equivalent to 1 cycle each second. It is likewise infrequently alluded to as transient recurrence to stress the difference to spatial recurrence, and normal recurrence to accentuate the differentiation to precise recurrence. Recurrence is estimated in hertz (Hz) which is equivalent to one occasion each second.
Learn more about frequency, visit
brainly.com/question/12833229
#SPJ4
Answer:
50 lb
Explanation:
Given,
The weight of astronaut's life support backpack on Earth (w) = 300 lb
Acceleration due to gravity on Earth (g) = 9.8 m/s²
Acceleration due to gravity on Moon = g'

We know that weight of an object on Earth is,


Similarly, weight on Moon will be




Thus the astronaut's life support backpack will weigh 50 lb on Moon.
Answer:
That insane it might be true because a planet sometimes quoted to be an Earth 2.0 or Earth's Cousin based on its characteristics; also known by its Kepler Object of Interest designation KOI-7016.01) is an exoplanet orbiting the Sun-like star Kepler-452 about 1,402 light-years (430 pc) from Earth in the constellation Cygnus.
Explanation:
Answer:
the knee extensors must exert 15.87 N
Explanation:
Given the data in the question;
mass m = 4.5 kg
radius of gyration k = 23 cm = 0.23 m
angle ∅ = 30°
∝ = 1 rad/s²
distance of 3 cm from the axis of rotation at the knee r = 3 cm = 0.03 m
using the expression;
ζ = I∝
ζ = mk²∝
we substitute
ζ = 4.5 × (0.23)² × 1
ζ = 0.23805 N-m
so
from; ζ = rFsin∅
F = ζ / rsin∅
we substitute
F = 0.23805 / (0.03 × sin( 30 ° )
F = 0.23805 / (0.03 × 0.5)
F F = 0.23805 / 0.015
F = 15.87 N
Therefore, the knee extensors must exert 15.87 N