The acceleration due to gravity near the surface of the planet is 27.38 m/s².
<h3>
Acceleration due to gravity near the surface of the planet</h3>
g = GM/R²
where;
- G is universal gravitation constant
- M is mass of the planet
- R is radius of the planet
- g is acceleration due to gravity = ?
g = (6.626 x 10⁻¹¹ x 2.81 x 5.97 x 10²⁴) / (6371 x 10³)²
g = 27.38 m/s²
Thus, the acceleration due to gravity near the surface of the planet is 27.38 m/s².
Learn more about acceleration due to gravity here: brainly.com/question/88039
#SPJ1
Given :
Reem took a wire of length 10 cm. Her friend Nain took a wire of 5 cm of the same material and thickness both of them connected with wires as shown in the circuit given in figure. The current flowing in both the circuits is the same.
To Find :
Will the heat produced in both the cases be equal.
Solution :
Heat released is given by :
H = i²Rt
Here, R is resistance and is given by :

So,
Now, in the question every thing is constant except for the length of the wire and from above equation heat is directly proportional to the length of the wire.
So, heat produced by Reem's wire is more than Nain one.
Hence, this is the required solution.
The words "... as shown ..." tell us that there's a picture that goes along
with this question, and you decided not to share it. That's sad and
disappointing, but I think the question can be answered without seeing
the picture.
The net force on the crate is zero. Evidence for this is that fact that
the crate is just sitting there. If the net force on an object is not zero,
then the object is accelerating ... it's either speeding up, slowing down,
or its the direction of its motion is changing. If none of these things is
happening, then the net force on the object must be zero.