Answer:
Explanation:
ignore air resistance
Let t be the time of fall for the dropped stone.
½(9.8)t² = 43.12(t - 2.2) + ½(9.8)(t - 2.2)²
4.9t² = 43.12t - 94.864 + 4.9(t² - 4.4t + 4.84)
4.9t² = 43.12t - 94.864 + 4.9t² - 21.56t + 23.716
0 = 21.56t - 71.148
t = 71.148/21.56 = 3.3 s
h = ½(9.8)3.3² = 53.361 = 53 m
or
h = 43.12(3.3 - 2.2) + ½(9.8)(3.3 - 2.2)² = 53.361 = 53 m
Same for #1 I have to say the same thing
Answer:
187 J
Explanation:
First Law of Thermodynamics :
ΔQ = ΔW + ΔU
ΔQ : Heat. If it added to system then positive and if it is rejected by system then negative.
ΔW : Work. If it done by the system then positive and if it is done on system then negative.
ΔU : Internal Energy. If it positive then temperature of system increased and if it is negative then temperature of system decreased.
ΔQ = 79 J
ΔW = - 108 J
ΔU = ?
substituting the value in the equation:
79 = -108 + ΔU
∴ ΔU = 187 J
Answer:
Explanation:
Since both vectors are pointing on the same direction (Northeast), the sum of them will point in that same direction, and its magnitud will be the sum of the magnitudes of each vector (40m/s2+10m/s2). This problem is just a problem in one dimension. The sum of the vectors is then 50m/s2 Northeast.
You didn't include the numerical value of speed.