This happens<span> at the boiling </span>temperature<span> of every substance that can vaporize. At the boiling </span>temperature<span>, adding </span>heat<span> energy converts the liquid into a gas WITHOUT RAISING THE </span>TEMPERATURE<span>. Adding </span>heat<span> to a boiling liquid is an important exception to general rule that more </span>heat<span> makes a higher </span>temperature<span>.</span>
Answer:
A jet plane flying straight and at level at constant speed
Explanation:
The<em> inertial frame </em>of reference is a frame of reference in which all <em>Newton law is valid</em> ie Newton second law of motion and therefore newton first law of motion holds good. <em>The frame of reference does not accelerate.</em>
All the object that is in the frame of reference are at rest or moving with constant rectilinear motion with constant velocity unless acted upon by any force.
The velocity at the maximum height will always be 0. Therefore, you will count your final velocity as 0, and your initial velocity as 35 m/s. Next, we know that the acceleration will be 9.8 m/s^2. How? Because the ball is thrown directly upward, and the only force acting on it will be the force of gravity pushing it back down.
The formula we use is h = (Vf^2 - Vi^2) / (2*-9.8m/s^2)
Plugging everything in, we have h = (0-1225)/(19.6) = 62.5 meters is the maximum height.
Answer:
The neutron can be found in the nucleus of the atom with the proton.
a) 32 kg m/s
Assuming the spring is initially at rest, the total momentum of the system before the collision is given only by the momentum of the bowling ball:

The ball bounces off at the same speed had before, but the new velocity has a negative sign (since the direction is opposite to the initial direction). So, the new momentum of the ball is:

The final momentum after the collision is the sum of the momenta of the ball and off the spring:

where
is the momentum of the spring. For the conservation of momentum,

b) -32 kg m/s
The change in momentum of bowling ball is given by the difference between its final momentum and initial momentum:

c) 64 N
The change in momentum is equal to the product between the average force and the time of the interaction:

Since we know
, we can find the magnitude of the force:

The negative sign simply means that the direction of the force is opposite to the initial direction of the ball.
d) The force calculated in the previous step (64 N) is larger than the force of 32 N.