Answer:
Explanation:
Given equation is ,
x =t + 2 t³ ,
dx/dt = velocity ( v ) = 1 + 6 t²
a) kinetic energy = 1/2 m v² = .5 x 4 ( 1 + 6 t² )² = 2 ( 1 + 6 t²)²
b ) Acceleration = dv /dt = 12 t .
force( F ) = mass x acceleration = 4 x 12 t = 48 t
Power = force x velocity = 48 t x ( 1 + 6 t²). = 48 t + 288 t³ )
work done = ∫ F dx =∫ 48 t x( 1 + 6t² )dt ; = [48t²/2 + 48 x 6 x t³ /3 = 24 t² + 96 t³ )]₀² = 864 J
Answer:
Final momentum after a head on collision is -2kgm/s
Explanation:
One ball moves to the right and the other moves opposite and momentum is a vector quantity so that considering the direction
Initial momenta are P₁=2x3=6kgm/s P₂=4x(-2)=-8kgm/s
Final momentum is the vector sum of P(final)= 6-8= -2 kgm/s
Complete question:
A college dormitory room measures 14 ft wide by 13 ft long by 6 ft high. Weight density of air is 0.07 lbs/ft3. What is the weight of air in it under normal conditions?
Answer:
the weight of the air is 76.44 lbs
Explanation:
Given;
dimension of the dormitory, = 14 ft by 13 ft by 6 ft
density of the air, = 0.07 lbs/ft³
The volume of the air in the dormitory room = 14 ft x 13 ft x 6 ft
= 1092 ft³
The weight of the air = density x volume
= 0.07 lbs/ft³ x 1092 ft³
= 76.44 lbs
Therefore, the weight of the air is 76.44 lbs
Answer:
The specific heat capacity is the heat or energy required to change one unit mass of a substance of a constant volume by 1 °C. The formula is Cv = Q / (ΔT ⨉ m)