Change in Momentum = mv - mu.
u = 0, v = 10 m/s. Note ball accelerated from rest, so initial velocity = 0. u =0
Change in Momentum = mv - mu = 3*10 - 3*0 =30.
Change in Momentum = 30 kgm/s.
Answer:
7.15 m/s
Explanation:
We use a frame of reference in which the origin is at the point where the trucck passed the car and that moment is t=0. The X axis of the frame of reference is in the direction the vehicles move.
The truck moves at constant speed, we can use the equation for position under constant speed:
Xt = X0 + v*t
The car is accelerating with constant acceleration, we can use this equation
Xc = X0 + V0*t + 1/2*a*t^2
We know that both vehicles will meet again at x = 578
Replacing this in the equation of the truck:
578 = 24 * t
We get the time when the car passes the truck
t = 578 / 24 = 24.08 s
Before replacing the values on the car equation, we rearrange it:
Xc = X0 + V0*t + 1/2*a*t^2
V0*t = Xc - 1/2*a*t^2
V0 = (Xc - 1/2*a*t^2)/t
Now we replace
V0 = (578 - 1/2*1.4*24.08^2) / 24.08 = 7.15 m/s
Answer:
AB = 29
Explanation:
For a better understanding, we must work this problem in a graphic way. In the attached image we can see the solution.
First, we draw a vertical dotted lines from the point J & K to the line ML, then we can see two new portions with the same length. Then with this simple analysis:
2x = 39 - 19
x = 10
Then we know that x = 10, another important data to find the answer is that the AB line is located in the midpoints of the legs. We also can see the right triangle MJ and the dotted line.
Now for every single right triangle, no matter its size and relationship between the vertical and the horizontal lengths, if some point is located in the hypotenuse (leg) at the middle of its length. This will be proportional to the vertical and the horizontal cathetus, therefore we will have the middle point on those two lines.
So, the AB line will be the sum of JK plus two times 5
AB = 19 + 5 + 5 = 29
Answer:
b.) Length
Explanation:
The length of the string can be changed by removing it from the slotted bracket and placing it back in. You can change the mass by varying the number of washers on the mass hanger. The amplitude can be changed by varying the starting angle of the pendulum (low, medium, and high angle). sorry if wrong