Absorbed photon energy
Ea = hc/λ.. (Planck's equation)
Ea = hc / 92.05^-9m
<span>Energy emitted
Ee = hc/ 1736^-9m </span>
Energy retained ..
∆E = Ea - Ee = hc(1/92.05<span>^-9 - 1/1736^-9) </span>
<span>∆E = (6.625^-34)(3.0^8) (1.028^7)
∆E = 2.04^-18 J </span>
<span>Converting J to eV (1.60^-19 J/eV)
∆E = 2.04^-18 / 1.60^-19
∆E = 12.70 eV </span>
<span>Ground state (n=1) energy for Hydrogen = - 13.60eV </span>
<span>New energy state = (-13.60 + 12.70)eV = -0.85 eV </span>
<span>Energy states for Hydrogen
En = - (13.60 / n²) </span>
n² = -13.60 / -0.85 = 16
n = 4
Answer:
metamorphic rock
Igneous rock can change into sedimentary rock or into metamorphic rock.
Explanation:
The <u>Mole</u> is the SI unit that expresses the amount of substance.
Mole is defined as - The mole is the amount of substance containing the same number of entities as there are in the 12 grams of Carbon - 12.
Mole is denoted by using symbol mol.
Mole = 6.022 x 10²³ elementary entities.
These number of elementary entities in 1 mole is equal to or called as an Avogadro's number. Mole is equal to 6.022 x 10²³ because this number of entity is same as in exactly 12 g of carbon-12.
It is a very important SI unit of measured which is used by the chemists. Moles are used in measuring in small or tiny things such as atoms, molecules and the other tiny particles.
To learn more about the mole concept,
brainly.com/question/28498715
#SPJ4
Molality is defined as the number of moles of solute in 1 kg of solvent.
since density and volume has been given we can calculate the mass of water
mass = density x volume
mass = 1.00 g/mL x 1620 mL = 1620 g
number of moles of glucose - 257 g / 180 g/mol = 1.43 mol
number of moles of glucose in 1620 g - 1.43 mol
therefore number of moles in 1000 g - 1.43 mol / 1.620 kg = 0.883 mol/kg
therefore molality is 0.883 mol/kg
Answer:
6.44 moles
Explanation:
At STP, 1 mole = 22.4 L
145 L × (1 mole ÷22.4 L) = 6.44 moles