Answer:
pH solutions cause the water to become more basic or more acidic therefore would force the organisms to adapt to their new situations
Answer:
40.7062 °C
Explanation:
Let the initial temperature = x °C
Boiling temperature of water = 100 °C
Using,
Q = m C ×ΔT
Where,
Q is the heat absorbed in the temperature change from x °C to 100 °C.
C gas is the specific heat of the water = 4.184 J/g °C
m is the mass of water
ΔT = (100 - x) °C
Given,
Mass = 2350 g
Q = 5.83 × 10⁵ J
Applying the values as:
Q = m C ×ΔT
5.83 × 10⁵ = 2350 × 4.184 × (100 - x)
<u>x, Initial temperature = 40.7062 °C </u>
Answer:
Fluorine > Selenium > Arsenic > Potassium > Argon
Explanation:
Electron affinity describes the ability or readiness or tendency of an atom to gain an electron.
The higher the value, the higher the tendency. Electron affinity depends on the on the nuclear charge and atomic radius. When nuclear charge is more, electron affinity is high, when atomic radius increases electron affinity reduces.
Noble gases such as Helium, Neon, and Argon would have 0 affinity for electrons because of their stable electronic configuration. From the list, Ar is the least in terms of electron affinity.
Potassium is a metal with large electropositivity which describes the tendency of an atom to lose electrons. Potassium would readily lose electrons instead of gaining.
Between Arsenic and Selenium: Arsenic belongs to group V and Selenium group VI. The two elements both belong to period IV on the periodic table. Across a period, electron affinity increases due to increase in nuclear charge. Therefore, Selenium would have a greater electron affinity compared to Arsenic.
Fluorine has the highest electron affinity of all. It needs just an electron to complete its octet.
The number of atoms in one mole is same in both which is 6 x 10^23 ^23 means power 23
Answer:
History of composition
Years Material Weight (grains)
1944–1946 gilding metal (95% copper, 5% zinc) 48 grains
1947–1962 bronze (95% copper, 5% tin and zinc) 48 grains
1962 – September 1982 gilding metal (95% copper, 5% zinc) 48 grains
October 1982 – present copper-plated zinc (97.5% zinc, 2.5% copper) 38.6 grains