Answer:
The predominant intermolecular force in the liquid state of each of these compounds:
ammonia (NH3)
methane (CH4)
and nitrogen trifluoride (NF3)
Explanation:
The types of intermolecular forces:
1.Hydrogen bonding: It is a weak electrostatic force of attraction that exists between the hydrogen atom and a highly electronegative atom like N,O,F.
2.Dipole-dipole interactions: They exist between the oppositely charged dipoles in a polar covalent molecule.
3. London dispersion forces exist between all the atoms and molecules.
NH3 ammonia consists of intermolecular H-bonding.
Methane has London dispersion forces.
Because both carbon and hydrogen has almost similar electronegativity values.
NF3 has dipole-dipole interactions due to the electronegativity variations between nitrogen and fluorine.
Answer:
Increase in height from the ground.
Explanation:
Potential energy =mass×acceleration due to gravity×height.
P.E= mgh
According to Avogadro's Law, same volume of any gas at standard temperature and pressure will occupy same volume. And one mole of any Ideal gas occupies 22.4 dm³ (1 dm³ = 1 L).
Data Given:
n = moles = ?
V = Volume = 16.8 L
Solution:
As 22.4 L volume is occupied by one mole of gas then the 16.8 L of this gas will contain....
= ( 1 mole × 16.8 L) ÷ 22.4 L
= 0.75 moles
Result:
16.8 L of Nitrogen gas will contain 0.75 moles at standard temperature and pressure.