The given question is incomplete. The complete question is:
When 136 g of glycine are dissolved in 950 g of a certain mystery liquid X, the freezing point of the solution is 8.2C lower than the freezing point of pure X. On the other hand, when 136 g of sodium chloride are dissolved in the same mass of X, the freezing point of the solution is 20.0C lower than the freezing point of pure X. Calculate the van't Hoff factor for sodium chloride in X.
Answer: The vant hoff factor for sodium chloride in X is 1.9
Explanation:
Depression in freezing point is given by:
= Depression in freezing point
= freezing point constant
i = vant hoff factor = 1 ( for non electrolyte)
m= molality =

Now Depression in freezing point for sodium chloride is given by:
= Depression in freezing point
= freezing point constant
m= molality =


Thus vant hoff factor for sodium chloride in X is 1.9
Answer:
Electromagnetic Wave Medium Matter:The ability to move or change an object, or what a wave
Longitudinal Wave Trough Rarefaction: The area in a longitudinal wave where the particles are close together.
Transverse Wave Energy Wavelength: The highest point of a transverse wave
Explanation:
give me brainliest
<u>Answer</u>:
A solid will melt at the temperature at which the kinetic energy breaks the
inter-molecular attractions.
<u>Explanation</u>:
The melting point is the state at which "a substance changes its temperature from a solid to liquid". At the melting point temperature, there is an equilibrium between the both the solid and the liquid phase. When the solid particle is heated by increasing the temperature the particle in the solid vibrate quickly and it absorbs kinetic energy.
It leads to the breaking of the organisation of particle in between the solid and that leads to the melting of solid. Thus, at the melting point, the kinetic energy breaks the inter-molecular attractions.