Jupiter's diameter is 11.2 times larger than Earth. This means that Earth would be relatively small. Based on searches around the internet from reliable sources, I can conclude that the earth would be the closest to the size of a marble.
Answer:
~65.9m/min
Explanation:
Excuse the messy handwriting!
Answer:
a. Planets move on elliptical orbits with the Sun at one focus.
Explanation:
Johannes Kepler was an astronomer who discovered that planets had elliptical orbits in the early 1600s (between 1609 and 1619).
The three (3) laws published by Kepler include;
I. The first law of planetary motion by Kepler states that, all the planets move in elliptical orbits around the Sun at a focus.
II. According to Kepler's second law of planetary motion, the speed of a planet is greatest when it is closest to the Sun.
Thus, the nearer (closer) a planet is to the Sun, the stronger would be the gravitational pull of the sun on the planet and consequently, the faster is the speed of the planet in terms motion.
III. The square of any planetary body's orbital period (P) is directly proportional to the cube of its orbit's semi-major axis.
Hence, one of Kepler's laws of planetary motion states that planets move on elliptical orbits with the Sun at one focus. This is his first law of planetary motion.
Answer:
Wavelength = 1.36 * 10^{-34} meters
Explanation:
Given the following data;
Mass = 0.113 kg
Velocity = 43 m/s
To find the wavelength, we would use the De Broglie's wave equation.
Mathematically, it is given by the formula;

Where;
h represents Planck’s constant.
m represents the mass of the particle.
v represents the velocity of the particle.
We know that Planck’s constant = 6.6262 * 10^{-34} Js
Substituting into the formula, we have;


Wavelength = 1.36 * 10^{-34} meters