1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lisov135 [29]
3 years ago
14

To understand the behavior of the electric field at the surface of a conductor, and its relationship to surface charge on the co

nductor. A conductor is placed in an external electrostatic field. The external field is uniform before the conductor is placed within it. The conductor is completely isolated from any source of current or charge.
Physics
1 answer:
grandymaker [24]3 years ago
3 0

Answer:

Explanation:

The electric field inside of a conductor is 0 because the conduction electrons are pushed to the outer edges of the conductor. The surface of the conductor still has charge.

You might be interested in
you are piloting a small plane and you want to reach an airport 450 km due south in 3.0 h a wind is blowing from the west 50.0 k
alex41 [277]

Answer:

You should choose airspeed 158.11 km/h at 18.4° west of south

Explanation:

The distance to the air port is 450 km due to south

You should to reach the airport in 3 hours

→ Velocity = distance ÷ time

→ Distance = 450 km , time = 3 hours

→ The velocity of your plane = 450 ÷ 3 = 150 km/h due to south

A wind is blowing from west 50 km/h

We need to know what heading and airspeed you should choose to

reach your destination

At first we must find the resultant velocity of your plane and the wind

The south and west are perpendicular, then the resultant velocity is

→ v_{R}=\sqrt{(v_{p})^{2}+(v_{w})^{2}}

→ v_{p}=150 km/h ,  v_{w}=50 km/h

→ v_{R}=\sqrt{(150)^{2}+(50)^{2}}=158.11 km/h

To cancel the velocity of the wind, the pilot should maintain the velocity

of the plane at 158.11 km/h

The direction of the velocity is the angle between the resultant velocity

and the vertical (south)

→ The direction of the velocity is tan^{-1}\frac{50}{150}=18.4°

The direction of the velocity is 18.4° west of south

<em>You should choose airspeed 158.11 km/h at 18.4° west of south</em>

8 0
3 years ago
If an object is thrown in an upward direction from the top of a building 1.6 x 10^2 ft. high at an initial velocity of 21.82 mi/
Goshia [24]

If an object is thrown in an upward direction from the top of a building 1.60 x 102 ft. high at an initial velocity of 21.82 mi/h, what is its final velocity when it hits the ground? (Disregard wind resistance. Round answer to nearest whole number and do not reflect negative direction in your answer.)


this question is troubling me i guessed 96 ft/s

can someone help me out and explain it thanks so much!!!!!!



7 0
3 years ago
Read 2 more answers
A 2.00-kg object A is connected with a massless string across a massless, frictionless pulley to a 3.00-kg object B. Object A re
slamgirl [31]

Answer:

  • tension: 19.3 N
  • acceleration: 3.36 m/s^2

Explanation:

<u>Given</u>

  mass A = 2.0 kg

  mass B = 3.0 kg

  θ = 40°

<u>Find</u>

  The tension in the string

  The acceleration of the masses

<u>Solution</u>

Mass A is being pulled down the inclined plane by a force due to gravity of ...

  F = mg·sin(θ) = (2 kg)(9.8 m/s^2)(0.642788) = 12.5986 N

Mass B is being pulled downward by gravity with a force of ...

  F = mg = (3 kg)(9.8 m/s^2) = 29.4 N

The tension in the string, T, is such that the net force on each mass results in the same acceleration:

  F/m = a = F/m

  (T -12.59806 N)/(2 kg) = (29.4 N -T) N/(3 kg)

  T = (2(29.4) +3(12.5986))/5 = 19.3192 N

__

Then the acceleration of B is ...

  a = F/m = (29.4 -19.3192) N/(3 kg) = 3.36027 m/s^2

The string tension is about 19.3 N; the acceleration of the masses is about 3.36 m/s^2.

3 0
3 years ago
Missy watched a storm last night with her brother. During the storm, she witnessed a large lightening bolt. What energy transfor
devlian [24]

Answer:

The answer to the question is light

5 0
3 years ago
Read 2 more answers
Which graph illustrates constant speed and velocity?
boyakko [2]

The correct graph is <u>D</u>.

The graph <em>A</em> is a straight line sloping downwards and it shows that the speed of the body is decreasing at a constant rate. Therefore, this s a graph of a body that is under a constant deceleration.

The graph B is a straight line which slopes upwards. Hence the graph shows that the speed of the body increases at a constant rate. Therefore, this is a graph of a body that is accelerating at a constant rate.

The graph C is curved line, which curves upwards. The slope of the curve increases with time. This is therefore, a graph of a body which is under increasing acceleration.

The graph D, however is a straight line parallel to the time axis. The speed of the body has the same value at all times. Therefore, Graph D is the graph which shows the motion of a body with constant speed.

8 0
3 years ago
Read 2 more answers
Other questions:
  • How proton ,neutron and electrons are alike
    5·1 answer
  • Suppose you are driving in a car. A truck drives past you, traveling in the same direction you are driving. Which statement best
    5·1 answer
  • Describe the proton gradient generated by the electron transport chain
    15·1 answer
  • Barack is playing basketball in his back yard. He takes a shot 7.0 m from the basket (measured along the ground), shooting at an
    13·1 answer
  • If a charge of 12 C flows past any point along a circuit in _____ seconds, the current at that point would be 3 A.
    15·1 answer
  • Please Help ASAP
    14·1 answer
  • Which statement best supports the claim that there is such a thing as a perfect pitch?
    10·1 answer
  • All changes in the state of matter of a substance requires a change in
    12·2 answers
  • WHO EVER ANSWERS CORRECT I'LL GIVE BRAINLIEST!!!!!!! Why might it be helpful to us to measure gravity fluctuations on Earth? Wha
    10·1 answer
  • A net force of 60 N north acts on an object with a mass of 30 kg. Use Newton's second law of
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!