Answer:
The canon B hits the ground fast.
Explanation:
Given that,
Speed of cannon A = 85 m/s
Speed of cannon B= 100 m/s
Speed of cannon C = 75 m/s
We need to calculate the cannonballs will hit the ground with the greatest speed
Using conservation of energy
The final kinetic energy of canon depends on initial kinetic energy and potential energy.
The final velocity depends upon initial velocity and initial height.
So, the initial velocity of canon B is high.
Hence, The canon B hits the ground fast.
Answer:
Yes convection will always work faster and more efficiently.
Explanation:
When a gas or a liquid is heated, hot areas of the material flow and mix with the cool areas. ... Convection transfers heat over a distance faster than conduction. But ultimately conduction must transfer the heat from the gas to the other object, though molecular contact.
Answer: 4.17m
Explanation:
The observer at C will hear a sound on no sound upon whether the interference is constructive or destructive.
If the listeners hears sounds it is caled constructive interference but if he hears no sound its called destructive interference.
So
d2 - d1 = (n *lamba)/ 2
Where n=1,3,5
lamda=v/f =349/62.8
lamda=5.56m
d2= d1 + nlamda/2
d2= 1 + 5.56/2
d2= 3.78m
X'= 1 cos 60= 0.5m
Y= 1 sin60= 0.866m
X"^2 + Y^2 =d2^2
X" =√(y^2 - d2^2)
X"=√(3.78^2 - 0.886^2)
X"= 3.67m
So therefore the closest that speaker A can be to speaker B so the listener does not hear any sound is X' + X"= 0.5 + 3.67
4.17m
Geometrically, a screw can be viewed as a narrow inclined plane wrapped around a cylinder. Like the other simple machines a screw can amplify force; a small rotational force (torque) on the shaft can exert a large axial force on a load.
Answer:
8.8 × 10⁻³ g/L
Explanation:
NaF is a strong electrolyte that ionizes according to the following reaction.
NaF(aq) → Na⁺(aq) + F⁻(aq)
Then, the concentration of F⁻ will also be 0.10 M.
In order to find the solubility of PbF₂ (S), we will use an ICE Chart.
PbF₂(s) ⇄ Pb²⁺(aq) + 2 F⁻(aq)
I 0 0.10
C +S +2S
E S 0.10 + 2S
The solubility product (Kps) is:
Kps = 3.6 × 10⁻⁸ = [Pb²⁺].[F⁻]² = S . (0.10 + 2S)²
In the term 0.10 + 2S, 2S is negligible in comparison with 0.10 and we can omit it to simplify calculations.
Kps = 3.6 × 10⁻⁸ = S . (0.10)²
S = 3.6 × 10⁻⁵ M
The molar mass of PbF₂ is 245.20 g/mol. The solubility of PbF₂ in g/L is:
3.6 × 10⁻⁵ mol/L × 245.20 g/mol = 8.8 × 10⁻³ g/L