Taking into account the definition of density, the density of the sample is 0.5
.
It is necessary yo know that density is defined as the property that matter, whether solid, liquid or gas, has to compress into a given space.
In other words, density allows you to measure the amount of mass in a certain volume of a substance.
Then, the expression for the calculation of density is the quotient between the mass of a body and the volume it occupies:

In this case, you know:
Then, replacing in the definition of density:

Solving:
<u><em>density= 0.5 </em></u>
<u><em /></u>
Finally, the density of the sample is 0.5
.
Learn more about density:
Q1. An inorganic compound is a compound where the main constituent or substance is not that of Carbon but predominantly other elements, such as I, N etc. An organic compound is one where the main substituent or main element, the element found in much greater amounts would be Carbon.
Q2. Water is considered a very good solvent, because of its ability to dissolve well with mostly all other polar compounds, and produce ions from those ionic compounds.
A. Hydrogen atoms
B. Oxygen atom.
The balanced equation for the neutralisation reaction is as follows
2NaOH + H₂SO₄ ---> Na₂SO₄ + 2H₂O
stoichiometry of NaOH to H₂SO₄ is 2:1
the number of moles of NaOH reacted - 0.126 mol/L x 0.0173 L = 0.00218 mol
if 2 mol of NaOH reacts with 1 mol of H₂SO₄
then 0.00218 mol of NaOH reacts with - 0.00218 / 2 = 0.00109 mol of H₂SO₄
molarity is the number of moles of solute in 1 L solution
therefore if 25 mL contains - 0.00109 mol
then 1000 mL contains - 0.00109 mol / 25 mL x 1000 mL = 0.0436 mol/L
therefore molarity of H₂SO₄ is 0.0436 M
Answer:
Plants consume carbon through transpiration
Explanation:
In transpiration, plants lose water vapor through the stomata in their leaves. No carbon is involved in transpiration, which has an outbound direction. Nothing can be consumed through the stomata when vapor is going out of the plant. It´s like trying to get in through the exit.
The moles of gas in the bottle has been 0.021 mol.
The ideal gas has been given as the gas where there has been negligible amount of interatomic collisions. The ideal gas equation has been given as:

<h3>Computation for the moles of gas</h3>
The gi<em>ve</em>n gas has standard pressure, 
The volume of the gas has been, 
The temperature of the gas has been, 
Substituting the values for the moles of gas, <em>n:</em>
<em />
<em />
The moles of gas in the bottle has been 0.021 mol.
Learn more about ideal gas, here:
brainly.com/question/8711877