'cause many alpha-particle goes without any deflection........
Answer:
0.0184
Explanation:
Let's consider the following reaction at equilibrium.
2 HI(g) ⇌ H₂(g) + I₂(g)
The concentration equilibrium constant (Kc) is equal to the product of the concentration of the products raised to their stoichiometric coefficients divided by the product of the concentration of the reactants raised to their stoichiometric coefficients.
Kc = [H₂] × [I₂] / [HI]²
Kc = (4.78 × 10⁻⁴) × (4.78 × 10⁻⁴) / (3.52 × 10⁻³)²
Kc = 0.0184
Answer:
For 2. the answer is 15.0 mL
For other examples, you can solve by exact way as I have solved the 2nd example.
I have writen down all the balanced chemical reaction equation for examples 1, 3, 4, 5 for you. ( picture 2 )
Explanation:
Please see the step-by-step solution in the picture attached below.(picture 1)
Hope this answer can help you. Have a nice day!
"Carbon" is an element. It is found in the fourth group of the periodic table, and it is a stable element. This means that it can not be decomposed via heating, because if an element were to break down, it would release its subatomic particles. The explanation was probably one used to describe the thermal decomposition of a compound into smaller compounds.
Answer:
The percentage deviation is
%
Explanation:
From the question we are told that
The concentration is of the solution is 
The true absorbance A = 0.7526
The percentage of transmittance due to stray light
% 
Generally Absorbance is mathematically represented as

Where T is the percentage of true transmittance
Substituting value



%
The Apparent absorbance is mathematically represented

Substituting values


= 0.7385
The percentage by which apparent absorbance deviates from known absorbance is mathematically evaluated as


%
Since Absorbance varies directly with concentration the percentage deviation of the apparent concentration from know concentration is
%