Answer:
0.9975 cup
Step-by-step explanation:
"Unrefined dark crystalline sugar" is what non-chemists call "brown sugar."
200.0 g brown sugar = 1 cup
199.5 g brown sugar = 199.5× 1/200
.0
199.5 g brown sugar = 0.9975 cup
A standard measuring cup is not capable of this precision and, furthermore, the mass of brown sugar you can get into a cup depends on how tightly you pack it.
Your Mole Day cake will be fine if you use 1 cup of brown sugar as usual.
D: they have new dna combinations
Answer:
Old and inefficient mining smokestacks contaminate the soils around abandoned mine sites.
Explanation:
A smokestack, is a very tall channel commonly used in many instances to release gases produced by combustion processes directly into the air. These high towers are aimed at dispersing the gaseous pollutants over a wider area thereby minimizing their impact.
Old and inefficient smokestack do not contaminate the soil since they are very high towers that discharge gases directly into the atmosphere. Hence they are not part of the sources of soil contamination in abandoned mines.
In order to measure 0.733 moles of KBr from a 3.00 M solution, the chemist needs 244 mL of solution.
<h3>What is molarity?</h3>
Molarity (M) is a unit of concentration of solutions, and it is defined as the moles of a solute per liters of a solution.
- Step 1: Calculate the liters of solution required.
A chemist has a 3.00 M KBr solution and wants to measure 0.733 moles of KBr. The required volume is:
0.733 mol × (1 L/3.00 mol) = 0.244 L
- Step 2: Convert 0.244 L to mL.
We will use the conversion factor 1 L = 1000 mL.
0.244 L × (1000 mL/1 L) = 244 mL
In order to measure 0.733 moles of KBr from a 3.00 M solution, the chemist needs 244 mL of solution.
Learn more about molarity here: brainly.com/question/9118107
<u>Given:</u>
Surface area at the narrow end, A1 = 5.00 cm2
Force applied at the narrow end, F1 = 81.0 N
Surface area at the wide end, A2 = 725 cm2
<u>To determine:</u>
Force F2 applied at the wide end
<u>Explanation:</u>
Use the relation
F1/A1 = F2/A2
F2 = F1*A2/A1 = 81.0 N * 725 cm2/5.00 cm2 = 11,745 N
Ans: (b)
The force applied at the wide end = 11,745 N