Answer:
Star A would have the greater absolute brightness. This is because absolute brightness finds out the actual brightness of a star at a standard distance from Earth. If Star A is twice as far from Earth as Star B but they still both appear to have the same amount of brightness.
There are 76 atoms in total
- Standard reduction potential of Ag/Ag⁺ is 0.80 v and that of Cu⁺²(aq)/Cu⁰ is +0.34 V.
- The couple with a greater value of standard reduction potential will oxidize the reduced form of the other couple.
Ag⁺ will be reduced to Ag(s) and Cu⁰ will be oxidized to Cu²⁺
Anode reaction: Cu⁰(s) → Cu²⁺ + 2 e⁻ E⁰ = +0.34 V
Cathode reaction: Ag⁺(aq) + e → Ag(s) E⁰ = +0.80 V
Cell reaction: Cu⁰(s) + 2 Ag⁺(aq) → Cu⁺²(aq) + 2 Ag⁰(s)
E⁰ cell = E⁰ cathode + E⁰ anode
= 0.80 + (-0.34) = + 0.46 V
Explanation:
#Medicine
Compounds used as medicines are most often organic compounds, which are often divided into the broad classes of small organic molecules (e.g., atorvastatin, fluticasone, clopidogrel) and "biologics" (infliximab, erythropoietin, insulin glargine),
#Industry
Polymers and plastics such as polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, polystyrene and polycarbonate
Answer:
c. 0.1 M Ga₂(SO₄)₃
Explanation:
The boiling point increasing of a solvent due the addition of a solute follows the formula:
ΔT = K*m*i
<em>Where K is boiling point increasing constant (Depends of the solute), m is molality = molarity when solvent is water, and i is Van't Hoff factor.</em>
<em />
That means the option with the higher m*i will be the solution with the highest boiling point:
a. NaCl has i = 2 (NaCl dissociates in Na⁺ and Cl⁻ ions).
m* i = 0.20*2 = 0.4
b. CaCl₂; i = 3. 3 ions.
m*i= 0.10M * 3 = 0.3
c. Ga₂(SO₄)₃ dissolves in 5 ions. i = 5
m*i = 0.10M*55 = 0.5
d. C₆H₁₂O₆ has i = 1:
m*i = 0.2M*1 = 0.2
The solution with highest boiling point is:
<h3>
c. 0.1 M Ga₂(SO₄)₃</h3>