Answer:
Approximately
. (Assuming that
, and that the tabletop is level.)
Explanation:
Weight of the book:
.
If the tabletop is level, the normal force on the book will be equal (in magnitude) to weight of the book. Hence,
.
As a side note, the
and
on this book are not equal- these two forces are equal in size but point in the opposite directions.
When the book is moving, the friction
on it will be equal to
, the coefficient of kinetic friction, times
, the normal force that's acting on it.
That is:
.
Friction acts in the opposite direction of the object's motion. The friction here should act in the opposite direction of that
applied force. The net force on the book shall be:
.
Apply Newton's Second Law to find the acceleration of this book:
.
Explanation:
The given data is as follows.
k = 130 N/m,
= 17 cm = 0.17 m (as 1 m = 100 cm)
mass (m) = 2.8 kg
When the spring is compressed then energy stored in it is as follows.
Energy = 
Now, spring energy gets converted into kinetic energy when the box is launched.
So,
= 
= 

= 1.34
v = 1.15 m/sec
Now,
Frictional force = 
= 
= 4.116 N
Also, Kinetic energy = work done by friction
1.8515 =
d = 0.449 m
Thus, we can conclude that the box slides 0.449 m across the rough surface before stopping.
the outermost layer of Earth’s lithosphere that
is found under the oceans and
molded at scattering
centres ono
ceanic ridges, which occur at deviating plate boundaries
Oceanic crust is about 6 km (4 miles) thick.
hope it helps