Answer: The energy incident on the solar panel during that day is
.
Explanation:
Given: Mass = 250 kg
Initial temperature = 
Final temperature = 
Specific heat capacity = 4200 
Formula used to calculate the energy is as follows.

where,
q = heat energy
m = mass of substance
C = specific heat capacity
= initial temperature
= final temperature
Substitute the values into above formula as follows.

As it is given that water absorbs 25% of the energy incident on the solar panel. Hence, energy incident on the solar panel can be calculated as follows.

Thus, we can conclude that the energy incident on the solar panel during that day is
.
Answer:
4.5s
Explanation:
That must be the right answer.
The magnitude of the vector B is 10.9
A vector is a quantity which has magnitude as well as direction and it follows vector laws of addition.
To calculate the magnitude of the vector, we have to put the square of the components of the vector along the axes under the root.
Vector B has components,
x = 2.4
y = 9.8
z = 4.1
Applying the formula,
|B| = √x²+y²+z²
|B| = √(2.4)² + (9.8)² + (4.1)²
|B| = √5.76+96.04+16.81
|B| = √118.61
|B| = 10.9
Talking about the direction the the Vector B, it will be the line joining the origin with the points (2.4,9.8,4.1)
To know more about Vectors, visit,
brainly.com/question/25705666
#SPJ9
Answer:
Explanation:
a )
If it is totally absorbed pressure is calculated as follows .
Pressure = I / c where I is intensity of light falling .
= 1000 / 3 x 10⁸
= 3.33 x 10⁻⁶ N / m²
b ) weight of tritium atom
= 3 x 1.67 x 10⁻²⁷ kg
acceleration = force / mass
= 3.33x 10⁻⁶ / 3 x 1.67 x 10⁻²⁷
= .6646 x 10²¹ m /s²
= 66.46 x 10¹⁹ m / s²
If one atom is overwhelmingly more electronegative than the other atom, the electrons will not be shared and an ionic bond will result. The periodic table below shows the Pauling electronegativity scale. A value of 4.0 is assigned to FLORINE, the most electronegative element.
ITS FLORINE
I BELIVE