Answer:
because potentil energy is redy to go but its bound up
And kinetic energy is in motion
Explanation:
If the mass of the sun is 1x, at least one planet will fall into the habitable zone. if I place a planet in orbits 1, 3, 5 , 6 and all planets will orbit the sun successfully.
<h3>
What are planets?</h3>
Planets are the large spherical shaped objects that rotate about the Sun in the elliptical orbits.
Planets are shaped from Planetary cloud. The dust storm and gases gathers under its own weight. The dense matter beginnings pivoting at high paces and accumulates more mass. The center structures, the star and rest of it ultimately levels into a curved plate from which planet is formed.
Thus, if I place a planet in orbits 1, 3, 5 , 6 and all planets will orbit the sun successfully.
Learn more about planets.
brainly.com/question/14581221
#SPJ1
Answer:
Explanation:
Given that,
Mass of ball m = 2kg
Ball traveling a radius of r1= 1m.
Speed of ball is Vb = 2m/s
Attached cord pulled down at a speed of Vr = 0.5m/s
Final speed V = 4m/s
Let find the transverse component of the final speed using
V² = Vr²+ Vθ²
4² = 0.5² + Vθ²
Vθ² = 4²—0.5²
Vθ² = 15.75
Vθ =√15.75
Vθ = 3.97 m/s.
Using the conservation of angular momentum,
(HA)1 = (HA)2
Mb • Vb • r1 = Mb • Vθ • r2
Mb cancels out
Vb • r1 = Vθ • r2
2 × 1 = 3.97 × r2
r2 = 2/3.97
r2 = 0.504m
The distance r2 to the hole for the ball to reach a maximum speed of 4m/s is 0.504m
The required time,
Using equation of motion
V = ∆r/t
Then,
t = ∆r/Vr
t = (r1—r2) / Vr
t = (1—0.504) / 0.5
t = 0.496/0.5
t = 0.992 second
Answer:
v = 3.84 m/s
Explanation:
In order for the riders to stay pinned against the inside of the drum the frictional force on them must be equal to the centripetal force:

where,
v = minimum speed = ?
g = acceleration due to gravity = 9.81 m/s²
r = radius = 10 m
μ = coefficient of friction = 0.15
Therefore,

<u>v = 3.84 m/s</u>