The answer to this question is 5
<span>A river can only carry a load if it has adequate energy. When the energy drops below a certain level, therefore, the load is dropped. In the Thalweg (the line of fastest flow), more load is carried, and this is also where the erosion occurs, adding more load. On the inside of a meander, for example, since the Thalweg is on the outside, the velocity on the inside is very low, and so deposition occurs. On the very inside, water merely trickles past. This is incapable of transporting load, so it deposits it until it is able to carry all of it.</span>
The number of years required for 1/4 cobalt-60 to remain after decay is calculated as follows
after one half life 1/2 of the original mass isotope remains
after another half life 1/4 mass of original mass remains
therefore if one half life is 5.3 years then the years required
= 2 x 5.3years = 10.6 years
Its phosphorus (P)In writing the electron configuration for Phosphorus the first two electrons will go in the 1s orbital. Since 1s can only hold two electrons the next 2 electrons for Phosphorous go in the 2s orbital. The next six electrons will go in the 2p orbital. The p orbital can hold up to six electrons. We'll put six in the 2p orbital and then put the next two electrons in the 3s. Since the 3s if now full we'll move to the 3p where we'll place the remaining three electrons. Therefore the Phosphorus electron configuration will be 1s22s22p63s23p3.