Answer:
The greatest acceleration when the unbalanced force is applied will be experienced in :
A) The box with a mass of 2 kg
Explanation:
According to second law of motion the external unbalanced force is directly proportional to rate of change of momentum.
F = (Final momentum - initial momentum)/time
or
Force is equal to the product of mass and acceleration
F = m x a
Here a= acceleration
m = mass of the object
If Force is constant then acceleration is inversely proportional to mass

A) The box with a mass of 2kg
F = 8 N

a = 4 m/s2
B) The box with the mass of 4kg

a = 2 m/s2
C) The box with a mass of 6kg

a = 1.33 m/s2
D) The box with a mass of 8kg

a = 1 m/s2
Answer:
Coefficient of 
Coefficient of
=8
Explanation:
We are given that a reaction in which
reacts with 
We have to find the coefficient of each reactants in balanced reaction

Coefficient is defined the constant value multiplied with a reactant in a reaction.
Coefficient of
=3
Coefficient of 
Coefficient of 
Coefficient of 
Coefficient of 
Coefficient of KOH=2
Hence, Coefficient of
and coefficient of 
Answer:
4. 60 neutrons.
Explanation:
The given isotopes;
¹⁰⁶₄₆Pd
In this isotope, we can deduce that the mass number is the superscript and the atomic number is the subscript;
Mass number = 106
Atomic number = 46
Mass number is the number of protons and neutrons in an atom;
Mass number = Protons + neutrons
Atomic number is the number of protons
So, Number of protons = 46
Number of neutrons = Mass number - Atomic number
= 106 - 46
= 60
Number of neutrons = 60
Nuclear reactions happen inside the nucleus,so it changes the protons and neutrons