Answer:
d d d d d d d d d dd d d d d .
f q q q q q
Answer:
The equilibrium concentration of NO is 0.001335 M
Explanation:
Step 1: Data given
The equilibrium constant Kc is 0.0025 at 2127 °C
An equilibrium mixture contains 0.023M N2 and 0.031 M O2,
Step 2: The balanced equation
N2(g) + O2(g) ↔ 2NO(g)
Step 3: Concentration at the equilibrium
[N2] = 0.023 M
[O2] = 0.031 M
Kc = 0.0025 = [NO]² / [N2][O2]
Kc = 0.0025 = [NO]² / (0.023)(0.031)
[NO] = 0.001335 M
The equilibrium concentration of NO is 0.001335 M
Answer:
Most stars are rather simple things. They come in a variety of sizes and temperatures, but the great majority can be characterized by just two parameters: their mass and their age. (Chemical composition also has some effect, but not enough to change the overall picture of what we will be discussing here. All stars are about three-quarters hydrogen and one-quarter helium when they are born.)
817.567 mm hg the answer for number 2
Answer is: B because it has a lower activation energy.
For all chemical reaction some energy is required and that energy is called activation energy (energy that needs to be absorbed for a chemical reaction to start), activation energy for reaction B is lower that for reaction A.
Catalysis is the increase in the rate of a chemical reaction due to the participation of an additional substance called a catalyst.
Chemical reactions occur faster with a catalyst because they require less activation energy.