1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ber [7]
3 years ago
6

Rank the work done on the charged particles from highest to lowest

Physics
1 answer:
Artist 52 [7]3 years ago
4 0

Answer:

correct order of work done is given as

2 > 3 > 4 > 1

Explanation:

When positive charge is dragged opposite to electric field then in that case work done is positive while if negative charge is dragged opposite to electric field then the work done is negative

So here we will have

positive work for charge 2, 3 and 4 while for negative charge particle 1 the work done is negative

now here we also know that work done is product of force and displacement

so here work depends on displacement of charge particle

maximum displacement is force particle 2

minimum is for particle 4

so correct order of work done is given as

2 > 3 > 4 > 1

You might be interested in
Please help me with questions 1, 2 and 3. <br> i need a step by step explanation
kifflom [539]

Answer:

1) d

2) 5 m/s

3) 100

Explanation:

The equation of position x for a constant acceleration a and an initial velocity v₀, initial position x₀, time t is:

(i) x=\frac{1}{2}at^2+v_0t+x_0

The equation for velocity v and a constant acceleration a is:

(ii) v=at+v_0

1) Solve equation (ii) for acceleration a and plug the result in equation (i)

(iii) a = \frac{v -v_0}{t}

(iv) x = \frac{v-v_0}{2t}t^2+v_0t + x_0

Simplify equation (iv) and use the given values v = 0, x₀ = 0:

(v) x=-\frac{v_0}{2}t + v_0t= \frac{v_0}{2}t

2) Given v₀= 3m/s, a=0.2m/s², t=10 s. Using equation (ii) to get the final velocity v:v=at+v_0=0.2\frac{m}{s^2} * 10s+3\frac{m}{s}=2\frac{m}{s}+3\frac{m}{s}=5\frac{m}{s}

3) Given v₀=0m/s, t₁=10s, t₂=1s and x₀=0. Looking for factor f = x(t₁)/x(t₂) using equation(i) to calculate x(t₁) and x(t₂):

f=\frac{x(t_1)}{x(t_2)}=\frac{\frac{1}{2}at_1^2 }{\frac{1}{2}at_2^2}=\frac{t_1^2}{t_2^2}=\frac{10^2}{1^2}=\frac{100}{1}

5 0
3 years ago
A juggler throws a bowling pin straight up with an initial speed of 8.20 m/s. How much time elapses until the bowling pin return
tensa zangetsu [6.8K]

Answer:

1.68 s

Explanation:

From newton's equation of motion,

a = (v-u)/t.................................. Equation 1

Making t the subject of the equation

t =(v-u)g............................. Equation 2

Where t = time taken for the bowling pin to reach the maximum height, v = final velocity bowling pin, u = initial velocity of the bowling pin, g = acceleration due to gravity.

Note: Taking upward to be negative and down ward to be positive,

Given: v = 0 m/s ( at the maximum height), u = 8.20 m/s, g = -9.8 m/s²

t = (0-8.20)/-9.8

t = -8.20/-9.8

t = 0.84 s.

But,

T = 2t

Where T = time taken for the bowling pin to return to the juggler's hand.

T = 2(0.84)

T = 1.68 s.

T = 1.68 s

7 0
3 years ago
Using diagram differentiate between solenoid and a toroid
damaskus [11]

The Toroid is form when you have wound conductor around circular body. In this case you have magnatic field inside the core but you dont have any poles because circular body dont have ends. This can be used where you want minimum flux leakage and dont need magnatic poles. i.e. toroidal inductor, toroidal transformer.


The Solenoid is forn when you wound conductor around body with limb. In this case magnatic field creates two poles N and S. Solenoids have little bit flux leakage. This used where you want magnatic poles and flux leakage is not an issue. i.e. relay, motors, electromagnates.

1 == toroid


2= solenoid


3 0
3 years ago
A piston of volume 0.1 m3 contains two moles of a monatomic ideal gas at 300K. If it undergoes an isothermal process and expands
seropon [69]

Answer:

the work is done by the gas on the environment -is W= - 3534.94 J (since the initial pressure is lower than the atmospheric pressure , it needs external work to expand)

Explanation:

assuming ideal gas behaviour of the gas , the equation for ideal gas is

P*V=n*R*T

where

P = absolute pressure

V= volume

T= absolute temperature

n= number of moles of gas

R= ideal gas constant = 8.314 J/mol K

P=n*R*T/V

the work that is done by the gas is calculated through

W=∫pdV=  ∫ (n*R*T/V) dV

for an isothermal process T=constant and since the piston is closed vessel also n=constant during the process then denoting 1 and 2 for initial and final state respectively:

W=∫pdV=  ∫ (n*R*T/V) dV =  n*R*T  ∫(1/V) dV = n*R*T * ln (V₂/V₁)

since

P₁=n*R*T/V₁

P₂=n*R*T/V₂

dividing both equations

V₂/V₁ = P₁/P₂

W= n*R*T * ln (V₂/V₁)  = n*R*T * ln (P₁/P₂ )

replacing values

P₁=n*R*T/V₁ = 2 moles* 8.314 J/mol K* 300K / 0.1 m3= 49884 Pa

since P₂ = 1 atm = 101325 Pa

W= n*R*T * ln (P₁/P₂ ) = 2 mol * 8.314 J/mol K * 300K * (49884 Pa/101325 Pa) = -3534.94 J

5 0
3 years ago
light travels approximately 982,080,000 ft/s, and one year has approximately 32,000,000 seconds. A light year is the distance li
lapo4ka [179]

Answer:

The distance traveled in 1 year is: 3.143*10^{16}ft

Explanation:

Given

s = 982,080,000 ft/s --- speed

t = 32,000,000 s --- time

Required

The distance traveled

This is calculated as:

Speed = \frac{Distance}{Time}

So, we have:

Distance = Speed * Time

This gives:

Distance = 982,080,000 ft/s * 32,000,000 s

Distance = 982,080,000  * 32,000,000ft

Distance = 3.143*10^{16}ft -- approximated

5 0
2 years ago
Other questions:
  • A proton, mass 1.67 × 10−27 kg and charge +1.6 × 10−19 c, moves in a circular orbit perpendicular to a uniform magnetic field of
    11·1 answer
  • Name a characteristic property of water
    9·2 answers
  • In a discussion person A is talking 1.2 dB louder than person B, and person C is talking 3.2 dB louder than person A. What is th
    5·1 answer
  • The magnetic flux through a coil of wire containing two loops changes at a constant rate from -83 Wb to 82 Wb in 0.39 s .
    15·1 answer
  • The price of coffee fell sharply last month, while the quantity sold remained the same. Five people suggest various explanations
    10·1 answer
  • What is the name of NASA's special plane?
    14·1 answer
  • The gravitational constant G was first measured accurately by Henry Cavendish in 1798. He used an exquisitely sensitive balance
    8·1 answer
  • A 3 N force pushing to the right on a box causes it to accelerate 6 m/s² to the right. What is the mass of the box?
    8·1 answer
  • How is mass of the body measured ? Define one second ?
    10·1 answer
  • Help I need help with this
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!