Answer:
The answer to your question is: 15 pizzas
Explanation:
data
26 large pizzas ------ 66 students
? large pizzas -------- 38 students
Rule of three
x = 38 (26) / 66 = 14.96 ≈ 15 pizzas
Answer:
Accuracy measures how close results are to the true or known value. Precision, on the other hand, measures how close results are to one another.
Answer:
F = 0.00156[N]
Explanation:
We can solve this problem by using Newton's proposed universal gravitation law.

Where:
F = gravitational force between the moon and Ellen; units [Newtos] or [N]
G = universal gravitational constant = 6.67 * 10^-11 [N^2*m^2/(kg^2)]
m1= Ellen's mass [kg]
m2= Moon's mass [kg]
r = distance from the moon to the earth [meters] or [m].
Data:
G = 6.67 * 10^-11 [N^2*m^2/(kg^2)]
m1 = 47 [kg]
m2 = 7.35 * 10^22 [kg]
r = 3.84 * 10^8 [m]
![F=6.67*10^{-11} * \frac{47*7.35*10^{22} }{(3.84*10^8)^{2} }\\ F= 0.00156 [N]](https://tex.z-dn.net/?f=F%3D6.67%2A10%5E%7B-11%7D%20%2A%20%5Cfrac%7B47%2A7.35%2A10%5E%7B22%7D%20%7D%7B%283.84%2A10%5E8%29%5E%7B2%7D%20%7D%5C%5C%20F%3D%200.00156%20%5BN%5D)
This force is very small compare with the force exerted by the earth to Ellen's body. That is the reason that her body does not float away.
Answer:
The acceleration is a = 2.75 [m/s^2]
Explanation:
In order to solve this problem we must use kinematics equations.

where:
Vf = final velocity = 13 [m/s]
Vi = initial velocity = 2 [m/s]
a = acceleration [m/s^2]
t = time = 4 [s]
Now replacing:
13 = 2 + (4*a)
(13 - 2) = 4*a
a = 2.75 [m/s^2]