1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Shtirlitz [24]
3 years ago
7

Are my answers correct?

Physics
1 answer:
Tema [17]3 years ago
5 0

Explanation:

Your answers to 1 and 4 are correct, and your answer to 5 is half correct.

2. d = ((vf + vi) / 2) t

To solve for t, divide both sides by what's in the parenthesis:

d / ((vf + vi) / 2) = t

If you wish, you can simplify:

t = 2d / (vf + vi)

3. d = vi t + ½ a t²

To solve for a, first subtract vi t from both sides:

d − vi t = ½ a t²

Multiply both sides by 2:

2d − 2 vi t = a t²

Divide by t²:

a = (2d − 2 vi t) / t²

To solve for t when vi = 0, first substitute 0 for vi:

d = (0) t + ½ a t²

d = ½ a t²

Multiply both sides by 2:

2d = a t²

Divide both sides by a:

t² = 2d / a

Take the square root:

t = √(2d / a)

5. Fg = G m₁ m₂ / r²

To solve for r, first multiply both sides by r²:

Fg r² = G m₁ m₂

Divide both sides by Fg:

r² = G m₁ m₂ / Fg

Take the square root;

r = √(G m₁ m₂ / Fg)

Your other answer is correct.

Overall, good effort!

You might be interested in
A bus accelerates to 60 m/s to the east in 10 s. What is the buses acceleration? 2. A car traveling at 10.0 m/s to the west acce
professor190 [17]

Answers:

1) a=6\frac{m}{s^{2}}

2) t=8s

Explanation:

1) Acceleration a is defined as the variation of Velocity V in time t :  

a=\frac{V}{t}  (1)

A body also has acceleration when it changes its direction.

In this case we have a bus with a velocity of 60m/s to the east, that accelerates in a time 10s. So, we have to find the bus's acceleration:

a=\frac{60m/s}{10s}  (2)

a=6m/s^{2}  (3)  This is the bus's accelerration

2) Now we have a car that accelerates 2m/s^{2}  to the west in order to reach a speed of 16m/s in the same direction, and we have to find the time t it takes to the car to reach that velocity.

Therefore we have to find  t from (1):

t=\frac{V}{a}  (4)

t=\frac{16m/s}{2m/s^{2}}  (5)

Finally:

t=8s  (6)

3 0
3 years ago
A 10-foot ladder is leaning straight up against a wall when a person begins pulling the base of the ladder away from the wall at
docker41 [41]

Answer:

y = 4.36

Explanation:

Let the height of the ladder be L

L = 10

Also:

  • Let x = distance\ from\ the\ base\ of\ the\ ladder
  • Let y = height\ of\ the\ base\ of\ the\ ladder

When the ladder leans against the wall, it forms a triangle and the length of the ladder forms the hypotenuse.

So, we have:

L^2 = x^2 + y^2 --- Pythagoras Theorem

When the base is 9ft from the wall, this means that:

x = 9

Substitute 9 for x and 10 for L in L^2 = x^2 + y^2

10^2 = 9^2 + y^2

100 = 81 + y^2

Make y^2 the subject

y^2 = 100 - 81

y^2 = 19

Make y the subject

y = \sqrt{19

y = 4.36

<em>Hence, the true distance at that point is approximately 4.36ft</em>

8 0
3 years ago
A square wave has amplitude 0 V for the low voltage and 4 V for the high voltage. Calculate the average voltage by integrating o
Margarita [4]

Answer:

V_{average} = \frac{1}{2}  V_o  ,     V_{average} = 2 V

Explanation:

he average or effective voltage of a wave is the value of the wave in a period

            V_average = ∫ V dt

in this case the given volage is a square wave that can be described by the function

           V (t) = \left \{ {{V=V_o \ \ \  t<  \tau /2} \atop {V=0 \ \  \ \  t> \tau /2 }   } \right.

to substitute in the equation let us separate the into two pairs

             V_average = \int\limits^{1/2}_0 {V_o} \, dt + \int\limits^1_{1/2} {0} \, dt

             V_average = V_o \ \int\limits^{1/2}_0 {} \, dt

             V_{average} = \frac{1}{2}  V_o

we evaluate  V₀ = 4 V

             V_{average} = 4 / 2)

             V_{average} = 2 V

6 0
3 years ago
Proper design of automobile braking systems must account for heat buildup under heavy braking. Part A Calculate the thermal ener
AVprozaik [17]

Answer:

1838216 J

Explanation:

95 km/h = 26.39 m/s

40 km/h = 11.11 m/s

Initial kinetic energy

= .5 x 1600 x(26.39)²

= 557145.67 J

Final kinetic energy

= .5 x 1600 x ( 11.11)²

= 98745.68 J

Loss of kinetic energy

= 458400 J

Loss of potential energy

= mg x loss of height

= 1600 x 9.8 x 340 sin 15

= 1379816 J

Sum of Loss of potential energy and Loss of kinetic energy

=  1379816 + 458400

= 1838216 J

This is the work done by the friction . So this is heat generated.

8 0
3 years ago
Describe what a hydrogen bond is. 6th grade answer
r-ruslan [8.4K]

Answer:

<em>Hydrogen bond is the attractive force between the hydrogen attached electronegative atom </em>

Explanation:

8 0
3 years ago
Other questions:
  • Electron groups consist of which of the following? A.Bonded pairs of electrons B.Lone-pair electrons C.Any atom that's an ion D.
    6·1 answer
  • The number density of gas atoms at a certain location in the space above our planet is about 1.05 × 1011 m-3, and the pressure i
    14·1 answer
  • "The gravity of the Sun causes the planets to move in a circular path."
    12·1 answer
  • A force of 20N acts upon of 5 kg. Calculate the acceleration of the object.
    6·1 answer
  • A ball is projected vertically downward at a speed of 4.00 m/s. How far does the bal travel in 1.80 s? What is the velocity of t
    10·1 answer
  • A large truck collides head-on with a small compact car. During the collision: (A) the truck exerts a greater amount of force on
    9·1 answer
  • Lithium and francium have similar properties because they
    5·1 answer
  • A car drives around a curve that has a radius of 190 m with a speed of 33 m/s. If the car has a mass of 625 kg what will be the
    12·1 answer
  • If one branch of a 120-v power lines is protected by a 20-A fuse, will the fuse carry an 8-Ώ load
    15·1 answer
  • A barometer reads 780 mm Hg. Mercury has a density of 1.36 x 10^4 kg /m^3.
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!