Answer:
☆<《<em><u>HOPE IT WILL HELP YOU</u></em><em><u> </u></em>》>☆
Explanation:
The probability of getting 4 is 1
Answer:
Upper disk rotates at a constant angular velocity. The velocity at any height from stationery disk, say at x metres
where v is tangential velocity at radius r from the centre of disk
The radial component of velocity is given as
The z component of velocity is also given as
W=0
Total velocity,
Answer:
Explanation:
Since the block is at rest in an elevated position, we can assume that it only has potential energy.
U=mgh is the formula for potential energy where U=potential energy, m= mass, g=acceleration due to gravity, and h=height.
Plug in known variables....
U=4kg*9.8m/s^2*20m
U=784 joules of potential energy or letter A.
Answer:
The polarity of water molecules means that molecules of water will stick to each other like when unlike charges attracts. This is called hydrogen bonding.
Polarity makes water a good solvent, gives it the ability to stick to itself (cohesion), stick to other substances (adhesion), and have surface tension (due to hydrogen bonding).
When the two hydrogen atoms bond with the oxygen, they attach to the top of the molecule. This molecular structure gives the water molecule polarity, or a lopsided electrical charge that attracts other atoms. The end of the molecule with the two hydrogen atoms is positively charged.
Explanation:
Incomplete question.The Complete question is here
A flat uniform circular disk (radius = 2.00 m, mass = 1.00 ✕ 102 kg) is initially stationary. The disk is free to rotate in the horizontal plane about a friction less axis perpendicular to the center of the disk. A 40.0-kg person, standing 1.25 m from the axis, begins to run on the disk in a circular path and has a tangential speed of 2.00 m/s relative to the ground.
a.) Find the resulting angular speed of the disk (in rad/s) and describe the direction of the rotation.
b.) Determine the time it takes for a spot marking the starting point to pass again beneath the runner's feet.
Answer:
(a)ω = 1 rad/s
(b)t = 2.41 s
Explanation:
(a) initial angular momentum = final angular momentum
0 = L for disk + L............... for runner
0 = Iω² - mv²r ...................they're opposite in direction
0 = (MR²/2)(ω²) - mv²r
................where is ω is angular speed which is required in part (a) of question
0 = [(1.00×10²kg)(2.00 m)² / 2](ω²) - (40.0 kg)(2.00 m/s)²(1.25 m)
0=200ω²-200
200=200ω²
ω = 1 rad/s
b.)
lets assume the "starting point" is a point marked on the disk.
The person's angular speed is
v/r = (2.00 m/s) / (1.25 m) = 1.6 rad/s
As the person and the disk are moving in opposite directions, the person will run part of a revolution and the turning disk would complete the whole revolution.
(angle) + (angle disk turns) = 2π
(1.6 rad/s)(t) + ωt = 2π
t[1.6 rad/s + 1 rad/s] = 2π
t = 2.41 s