Answer:
Same
Explanation:
While moving through a magnetic field in a direction perpendicular to a B-field, a continuous force experienced by a charged particle. If this magnetic field remains uniform, the force exerted also remains same and hence the velocity with which the particle is moving remains same. However, the particle is forced to move on a curved path until it forms a complete circle.
Hence, the kinetic energy remains the same because the speed is same
Answer:
B. Magnetic Force
Explanation:
two pieces of irons cannot attract each other unless at least one of them is magnetize. That force is called magnetism.
A star's temperature is most likely indicated by the color of it. The hotter the star, the bluer it is. The colder the star, the redder it is.
The Moon is 3.8 108 m from Earth and has a mass of 7.34 1022 kg. 5.97 1024 kg is the mass of the Earth.
<h3>What kind of gravitational pull does the moon have on the planet?</h3>
On the surface of the Moon, the acceleration caused by gravity around 1.625 m/s2 which is 16.6% greater than on the surface of the Earth 0.166.
<h3>What does the Earth's center's gravitational pull feel like?</h3>
Gravity is zero if you are in the centre of the earth since everything around you is pulling "up" (up is the only direction).
<h3>Where is the Earth's and the moon's gravitational centre?</h3>
It is around 1700 kilometres below Earth's surface.
To know more about gravitational force visit:-
brainly.com/question/12528243
#SPJ4
Answer:
True b and c
Explanation:
In an RLC circuit the impedance is
![Z = \sqrt{[R^{2} + ( (wL)^{2} + (\frac{1}{wC})^{2} ] }](https://tex.z-dn.net/?f=Z%20%3D%20%5Csqrt%7B%5BR%5E%7B2%7D%20%2B%20%28%20%28wL%29%5E%7B2%7D%20%2B%20%28%5Cfrac%7B1%7D%7BwC%7D%29%5E%7B2%7D%20%5D%20%20%20%20%20%7D)
examine the different phrases..
a) False. The maximum impedance is the value of the resistance
b) True. Resonance occurs when
(wL)² + (1 / wC)² = 0
w² = 1 / LC
c) True. In resonance the impedance is the resistive part and the power is maximum
d) False. In resonance the inductive and capacitive part cancel each other out
e) False. The impedance is always greater outside of resonance, but at the resonance point they are equal