9514 1404 393
Answer:
angles (W, X, Y) = (77°, 62°, 41°)
Step-by-step explanation:
<u>Given</u>:
ΔWZY
∠W = 2(∠Y) -5°
∠X = ∠Y +21°
<u>Find</u>:
∠X, ∠Y, ∠W
<u>Solution</u>:
Using angle measures in degrees, we have ...
∠X + ∠Y + ∠Z = 180
(∠Y +21) +∠Y + (2(∠Y) -5) = 180
4(∠Y) +16 = 180 . . . . . simplify
∠Y +4 = 45 . . . . . . . . . divide by 4
∠Y = 41 . . . . . . . . . . . . subtract 4
∠W = 2(41) -5 = 77
∠X = 41 +21 = 62
The angle measures of angles (W, X, Y) are (77°, 62°, 41°), respectively.
Answer: X= 16
Step-by-step explanation:
Answer:
4.33333333333 or 4 and 1/3
Step-by-step explanation:
Answer:
a(4) = 15/4
Step-by-step explanation:
Here we're told that the first term is a(1) = 30 and that the common factor r = 1/2.
Thus, the geometric sequence formula specific to this case is
a(n) = 30(1/:2)^(n-1).
What is the fourth term? Let n = 4,
a(4) = 30(1/2)^(4-1), or a(4) = 30(1/2)^(3), or a(4) = 30(1/8) = 30/8, or, in reduced form,
a(4) = 15/4.