I didn't do anything but yay
Answer:
To convert a quadratic from y = ax2 + bx + c form to vertex form, y = a(x - h)2+ k, you use the process of completing the square.
Step-by-step explanation:
Draw a van diagram then in the middle write what is the same about them. Then state why and how these are the same
I'm going to assume the joint density function is

a. In order for
to be a proper probability density function, the integral over its support must be 1.

b. You get the marginal density
by integrating the joint density over all possible values of
:

c. We have

d. We have

and by definition of conditional probability,


e. We can find the expectation of
using the marginal distribution found earlier.
![E[X]=\displaystyle\int_0^1xf_X(x)\,\mathrm dx=\frac67\int_0^1(2x^2+x)\,\mathrm dx=\boxed{\frac57}](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle%5Cint_0%5E1xf_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac67%5Cint_0%5E1%282x%5E2%2Bx%29%5C%2C%5Cmathrm%20dx%3D%5Cboxed%7B%5Cfrac57%7D)
f. This part is cut off, but if you're supposed to find the expectation of
, there are several ways to do so.
- Compute the marginal density of
, then directly compute the expected value.

![\implies E[Y]=\displaystyle\int_0^2yf_Y(y)\,\mathrm dy=\frac87](https://tex.z-dn.net/?f=%5Cimplies%20E%5BY%5D%3D%5Cdisplaystyle%5Cint_0%5E2yf_Y%28y%29%5C%2C%5Cmathrm%20dy%3D%5Cfrac87)
- Compute the conditional density of
given
, then use the law of total expectation.

The law of total expectation says
![E[Y]=E[E[Y\mid X]]](https://tex.z-dn.net/?f=E%5BY%5D%3DE%5BE%5BY%5Cmid%20X%5D%5D)
We have
![E[Y\mid X=x]=\displaystyle\int_0^2yf_{Y\mid X}(y\mid x)\,\mathrm dy=\frac{6x+4}{6x+3}=1+\frac1{6x+3}](https://tex.z-dn.net/?f=E%5BY%5Cmid%20X%3Dx%5D%3D%5Cdisplaystyle%5Cint_0%5E2yf_%7BY%5Cmid%20X%7D%28y%5Cmid%20x%29%5C%2C%5Cmathrm%20dy%3D%5Cfrac%7B6x%2B4%7D%7B6x%2B3%7D%3D1%2B%5Cfrac1%7B6x%2B3%7D)
![\implies E[Y\mid X]=1+\dfrac1{6X+3}](https://tex.z-dn.net/?f=%5Cimplies%20E%5BY%5Cmid%20X%5D%3D1%2B%5Cdfrac1%7B6X%2B3%7D)
This random variable is undefined only when
which is outside the support of
, so we have
![E[Y]=E\left[1+\dfrac1{6X+3}\right]=\displaystyle\int_0^1\left(1+\frac1{6x+3}\right)f_X(x)\,\mathrm dx=\frac87](https://tex.z-dn.net/?f=E%5BY%5D%3DE%5Cleft%5B1%2B%5Cdfrac1%7B6X%2B3%7D%5Cright%5D%3D%5Cdisplaystyle%5Cint_0%5E1%5Cleft%281%2B%5Cfrac1%7B6x%2B3%7D%5Cright%29f_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac87)
The y-intercept is (0,-1)